Publications by authors named "Amsini Sadiki"

This paper provides a review of different contributions dedicated thus far to entropy generation analysis (EGA) in turbulent combustion systems. We account for various parametric studies that include wall boundedness, flow operating conditions, combustion regimes, fuels/alternative fuels and application geometries. Special attention is paid to experimental and numerical modeling works along with selected applications.

View Article and Find Full Text PDF

The chimney effect taking place in biomass cooking stoves results from a conversion process between thermal and mechanical energy. The efficiency of this conversion is assessed with the stove loss coefficient. The derivation of this quantity in cooking stove modelling is still uncertain.

View Article and Find Full Text PDF

Even though there is a pressing interest in clean energy sources, compression ignition (CI) engines, also called diesel engines, will remain of great importance for transportation sectors as well as for power generation in stationary applications in the foreseeable future. In order to promote applications dealing with complex diesel alternative fuels by facilitating their integration in numerical simulation, this paper targets three objectives. First, generate novel diesel fuel surrogates with more than one component.

View Article and Find Full Text PDF

The behaviors of spray, in Reactivity Controlled Combustion Ignition (RCCI) dual fuel engine and subsequent emissions formation, are numerically addressed. Five spray cone angles ranging between 5° and 25° with an advanced injection timing of 22° Before Top Dead Center (BTDC) are considered. The objective of this paper is twofold: (a) to enhance engine behaviors in terms of performances and consequent emissions by adjusting spray cone angle and (b) to outcome the exergy efficiency for each case.

View Article and Find Full Text PDF

This contribution presents a straightforward strategy to investigate the entropy production in stratified premixed flames. The modeling approach is grounded on a chemistry tabulation strategy, large eddy simulation, and the Eulerian stochastic field method. This enables a combination of a detailed representation of the chemistry with an advanced model for the turbulence chemistry interaction, which is crucial to compute the various sources of exergy losses in combustion systems.

View Article and Find Full Text PDF

In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS-LES approach (zonal LES), a hybrid RANS-LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively.

View Article and Find Full Text PDF

In this work, entropy generation analysis is applied to characterize and optimize a turbulent impinging jet on a heated solid surface. In particular, the influence of plate inclinations and Reynolds numbers on the turbulent heat and fluid flow properties and its impact on the thermodynamic performance of such flow arrangements are numerically investigated. For this purpose, novel model equations are derived in the frame of Large Eddy Simulation (LES) that allows calculation of local entropy generation rates in a post-processing phase including the effect of unresolved subgrid-scale irreversibilities.

View Article and Find Full Text PDF

The present study aims to assess the effects of two different underlying RANS models on overall behavior of the IDDES methodology when applied to different flow configurations ranging from fully attached (plane channel flow) to separated flows (periodic hill flow). This includes investigating prediction accuracy of first and second order statistics, response to grid refinement, grey area dynamics and triggering mechanism. Further, several criteria have been investigated to assess reliability and quality of the methodology when operating in scale resolving mode.

View Article and Find Full Text PDF