Publications by authors named "Amruthesh K"

The present study was focused on exploring the efficient inhibitors of closed state (form) of type III effector Xanthomonas outer protein Q (XopQ) (PDB: 4P5F) from the 44 phytochemicals of Picrasma quassioides using cutting-edge computational analysis. Among them, Kumudine B showed excellent binding energy (-11.0 kcal/mol), followed by Picrasamide A, Quassidine I and Quassidine J with the targeted closed state of XopQ protein compared to the reference standard drug (Streptomycin).

View Article and Find Full Text PDF

The rapid advancement of nanotechnology has led to unprecedented innovations across diverse industries, including pharmaceuticals, agriculture, cosmetics, electronics, textiles, and food, owing to the unique properties of nanoparticles. The extensive production and unregulated release of synthetic nanoparticles may contribute to nanopollution within the ecosystem. In the agricultural sector, nanotechnology is increasingly utilized to improve plant productivity, enhance resistance to stressors, and reduce the usage of chemicals.

View Article and Find Full Text PDF

The escalating global food demand driven by a gradually expanding human population necessitates strategies to improve agricultural productivity favorably and mitigate crop yield loss caused by various stressors (biotic and abiotic). Biotic stresses are caused by phytopathogens, pests, and nematodes, along with abiotic stresses like salt, heat, drought, and heavy metals, which pose serious risks to food security and agricultural productivity. Presently, the traditional methods relying on synthetic chemicals have led to ecological damage through unintended impacts on non-target organisms and the emergence of microbes that are resistant to them.

View Article and Find Full Text PDF

An opportunistic human pathogenic bacterium, Chromobacterium violaceum resists the potency of most antibiotics by exploiting the quorum sensing system within their community to control virulence factor expression. Therefore, blocking the quorum sensing mechanism could help to treat several infectious caused by this organism. The quorum sensing receptor (CviR) of C.

View Article and Find Full Text PDF

The ever-expanding pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has gained attention as COVID-19 and caused an emergency in public health to an unmatched level to date. However, the treatments used are the only options; currently, no effective and licensed medications are available to combat disease transmission, necessitating further research. In the present study, an in silico-based virtual screening of anti-HIV bioactive compounds from medicinal plants was carried out through molecular docking against the main protease (M) (PDB: 6LU7) of SARS-CoV-2, which is a key enzyme responsible for virus replication.

View Article and Find Full Text PDF

Breast cancer is the second most common malignancy in females worldwide and poses a great challenge that necessitates the identification of novel therapeutic agents from several sources. This research aimed to study the molecular docking and molecular dynamics simulations of four proteins (such as PDB: 6CBZ, 1FDW, 5GWK and 2WTT) with the selected phytochemicals from Withania somnifera to identify the potential inhibitors for breast cancer. The molecular docking result showed that among 44 compounds, two of them, Ashwagandhanolide and Withanolide sulfoxide have the potential to inhibit estrogen receptor alpha (ERα), 17-beta-hydroxysteroid -dehydrogenase type 1 (17β-HSD1), topoisomerase II alpha (TOP2A) and p73 tetramerization domain that are expressed during breast cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Agriculture faces increasing food demands due to global population growth, while various biotic and abiotic stresses, especially drought, significantly hinder productivity.
  • Drought stress leads to harmful changes in plants, causing stunted growth, reduced photosynthesis, and other negative effects, necessitating the development of effective mitigation strategies.
  • Using plant growth promoting rhizobacteria (PGPR) offers a promising alternative to improve drought tolerance and plant health through enhanced root structure, better water retention, and activation of stress defense mechanisms, but commercial use will rely on selecting effective strains.
View Article and Find Full Text PDF

Background: Coronavirus disease 2019 (COVID-19) has caused a global pandemic with a high mortality and morbidity rate worldwide. The COVID-19 vaccines that are currently in development or already approved are expected to provide at least some protection against the emerging variants of the virus, but the mutations may reduce the efficacy of the existing vaccines. Purified phytochemicals from medicinal plants provide a helpful framework for discovering new therapeutic leads as they have long been employed in traditional medicine to treat many disorders.

View Article and Find Full Text PDF

The main focus of this review is to discuss the current advancement in nano-metallic caused phytotoxicity on living organisms and current challenges in crops. Nanostructured materials provide new tools in agriculture to boost sustainable food production, but the main concern is that large-scale production and release of nanomaterials (NMs) into the ecosystem is a rising threat to the surrounding environment that is an urgent challenge to be addressed. The usage of NMs directly influences the transport pathways within plants, which directly relates to their stimulatory/ inhibitory effects.

View Article and Find Full Text PDF

Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand.

View Article and Find Full Text PDF

Zinc oxide nanoparticles have become one of the most popular metal oxide nanoparticles and recently emerged as a promising potential candidate in the fields of optical, electrical, food packaging, and biomedical applications due to their biocompatibility, low toxicity, and low cost. They have a role in cell apoptosis, as they trigger excessive reactive oxygen species (ROS) formation and release zinc ions (Zn) that induce cell death. The zinc oxide nanoparticles synthesized using the plant extracts appear to be simple, safer, sustainable, and more environmentally friendly compared to the physical and chemical routes.

View Article and Find Full Text PDF

Rhizobacteria from pearl millet were screened to produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase and to evaluate its role in alleviating drought stress. Amongst 96 isolates, 28 were positive for ACC deaminase production, with MMR04 offering maximum activity of 2196.23 nmol of α-ketobutyrate produced mg of protein h.

View Article and Find Full Text PDF

Sapota is an important horticultural crop grown in India, and Karnataka is a major producer of sapota. A characteristic leaf blight disease was observed in Southern Karnataka during field surveys conducted in 2019 with an incidence of 13-22% in approximately 45 ha of sapota field. The leaf blight-associated pathogen was isolated on the potato dextrose agar medium.

View Article and Find Full Text PDF

Rhizosphere-resident fungi that are helpful to plants are generally termed as 'plant growth promoting fungi' (PGPF). These fungi are one of the chief sources of the biotic inducers known to give their host plants numerous advantages, and they play a vital role in sustainable agriculture. Today's biggest challenge is to satisfy the rising demand for crop protection and crop yield without harming the natural ecosystem.

View Article and Find Full Text PDF

The study was undertaken to investigate the antioxidant, genotoxic, and cytotoxic potentialities of phyto-fabricated zinc oxide nanoparticles (ZnO-NPs) from (L.) Ker Gawl. aqueous leaf extract.

View Article and Find Full Text PDF
Article Synopsis
  • Cowpea is a vital pulse crop in arid and semi-arid regions but is susceptible to various diseases, with Dactuliophora sp. identified as the main pathogen causing zonate leaf spot (ZLS) in Karnataka, India.
  • A new species, Dactuliophora mysorensis sp. nov., was described after morphological investigations showed significant differences from D. tarrii, and a three-year study revealed high disease severity peaking from August to November, especially in the Doddamaragowdanahally area.
  • The study found that the systemic fungicides Benomyl and Carbendazim were effective in controlling the ZLS disease, suggesting their use for managing this pathogen.
View Article and Find Full Text PDF
Article Synopsis
  • Cowpea, a crucial legume crop in arid regions, is significantly produced in countries like Brazil, Nigeria, and India.
  • Researchers in southern Karnataka observed a leaf spot disease on cowpea plants with symptoms emerging as small circular spots that merged into larger lesions.
  • The fungus causing this disease was identified as Nigrospora sphaerica through laboratory isolation, cultural features, and genetic sequencing of the ribosomal RNA gene.
View Article and Find Full Text PDF

Cowpea is an important pulse crop cultivated in arid and semi-arid regions of the world. During field survey, a characteristic wilt was observed in around 45 ha of cowpea fields with incidence 17-25%. Infection was seen in pre-flowering stage and infected plants showed quick wilt symptoms with tan lesions near the stem-soil interface.

View Article and Find Full Text PDF

plant extract mediated propellant chemistry route was used for the green synthesis of zinc oxide nanoparticles. Prepared samples were confirmed for their nano regime using advanced characterization techniques such as powder X-ray diffraction and microscopic techniques such as scanning electron microscopy and transmission electron microscopy. The energy band gap of the green synthesized zinc oxide (ZnO)-nanoparticles (NPs) were found between 3.

View Article and Find Full Text PDF

In the current study, a total of 70 fungi were isolated from the rhizosphere soil of chilli collected from six different districts of south Karnataka, India. All the rhizospheric fungi were evaluated for its antagonistic nature against -the causal agent of anthracnose disease-and eight isolates were found positive. The antagonistic fungi were further characterized for the production of plant growth-promoting traits wherein five isolates were recorded positive for all the traits tested and were also positive for root colonization.

View Article and Find Full Text PDF

Zinc oxide nanoparticles synthesized through eco-friendly approach has gained importance among researchers due to its broad applications. In the present work, hexagonal wurtzite shape nanoparticles (below 100 nm size) were obtained using aqueous leaf extract of Cochlospermum religiosum which was confirmed through X-Ray diffraction (XRD) analysis. The synthesized ZnO-NPs showed an absorption peak at 305 nm which is one of the characteristic features of ZnO-NPs.

View Article and Find Full Text PDF

Context: Sida acuta Burm.f. (Malvaceae) extracts are reported to have applications against malaria, diuretic, antipyretic, nervous and urinary diseases.

View Article and Find Full Text PDF

Zinc oxide nanoparticles (ZnO-NPs) were synthesized for the first time from any of the species of Ceropegia. Presently, ZnO-NPs were synthesized from the leaf extract of Ceropegia candelabrum with zinc nitrate using a simple hydrothermal process. The synthesized ZnO-NPs showed an absorption peak at 320nm which is one of the characteristic features of ZnO-NPs.

View Article and Find Full Text PDF

Condensation of amine 1 with aldehyde 2 gives Schiff base, N-(4-((benzofuran-2-ylmethylene) amino)phenyl)acetamide 3. Schiff base on N-acylation with different substituted acid chlorides in the presence of triethylamine gives the corresponding benzamides, N-acetyl-N-(4-((benzofuran-2-ylmethylene)amino)phenyl)substitutedbenzamide (NABP) 5a-j. The structures of newly synthesized compounds were characterized by elemental analysis, (1)H NMR, (13)C NMR FT-IR, and mass spectral studies.

View Article and Find Full Text PDF