Transdermal administration remains an active research and development area as an alternative route for long-acting drug delivery. It avoids major drawbacks of conventional oral (gastrointestinal side effects, low drug bioavailability, and need for multiple dosing) or parenteral routes (invasiveness, pain, and psychological stress and bio-hazardous waste generated from needles), thereby increasing patient appeal and compliance. This review focuses on the current state of long-acting transdermal drug delivery, including adhesive patches, microneedles, and molecularly imprinted polymeric systems.
View Article and Find Full Text PDFAtopic dermatitis is a chronic inflammatory disorder with rising prevalence. The safety concerns over usually used steroids are driving the need for developing an effective atopic dermatitis treatment. The use of therapeutic agents such as cromolyn sodium (CS) is suggested.
View Article and Find Full Text PDFLewisite is a chemical warfare agent intended for use in World War and a potential threat to the civilian population due to presence in stockpiles or accidental exposure. Lewisite-mediated skin injury is characterized by acute erythema, pain, and blister formation. N-acetyl cysteine (NAC) is an FDA-approved drug for acetaminophen toxicity, identified as a potential antidote against lewisite.
View Article and Find Full Text PDFNAL's hydrophilicity and the inherent lipophilic properties of the stratum corneum hinders its capacity for immediate delivery through skin in opioid rescue cases. In this study, we had sought to investigate the feasibility of using minimally invasive physical ablative techniques including sonophoresis, laser, dermaplaning, microneedles, and microdermabrasion for systemically delivering NAL via the skin. These techniques reduced lag time to NAL delivery to about 3-12 min from 71.
View Article and Find Full Text PDFLewisite is a highly toxic chemical warfare agent that leads to cutaneous and systemic damage. N-acetylcysteine (NAC) and 4-phenylbutryic acid (4-PBA) are two novel antidotes developed to treat toxicity caused by lewisite and similar arsenicals. Our in vivo studies demonstrated safety and effectiveness of these agents against skin injury caused by surrogate lewisite (Phenylarsine oxide) proving their potential for the treatment of lewisite injury.
View Article and Find Full Text PDFApplication of drugs on skin with compromised barrier can significantly alter permeation of drugs with the possibility of increased adverse side effects or even toxicity. In this study, we tested in vitro delivery of diclofenac sodium from marketed brand and generic formulations across normal and compromised skin using microneedles and iontophoresis, alone and in combination. Ten tape strips on dermatomed human skin were used to create a compromised skin model, as demonstrated by changes in skin resistance and transepidermal water loss.
View Article and Find Full Text PDFLewisite is a highly toxic and potent chemical warfare vesicating agent capable of causing pain, inflammation, and blistering. Therapeutic strategies that safely and effectively attenuate this damage are important. Early and thorough decontamination of these agents from skin is required to prevent their percutaneous absorption.
View Article and Find Full Text PDFRaloxifene (RLX) is a second-generation selective estrogen receptor modulator approved for the prevention of invasive breast cancer in women. Oral therapy of RLX requires daily intake and is associated with side effects that may lead to low adherence. We developed a weekly transdermal delivery system (TDS) for the sustained delivery of RLX to enhance the therapeutic effectiveness, increase adherence, and reduce side effects.
View Article and Find Full Text PDFPurpose: To investigate in vitro transdermal delivery of tofacitinib citrate across human skin using microporation by microneedles and iontophoresis alone and in combination.
Methods: In vitro permeation studies were conducted using vertical Franz diffusion cells. Microneedles composed of polyvinyl alcohol and carboxymethyl cellulose were fabricated and successfully characterized using scanning electron microscopy.