Cytomegaloviruses (CMVs) are highly adapted to their host species resulting in strict species specificity. Hence, in vivo examination of all aspects of CMV biology employs animal models using host-specific CMVs. Infection of rhesus macaques (RM) with rhesus CMV (RhCMV) has been established as a representative model for infection of humans with HCMV due to the close evolutionary relationships of both host and virus.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2018
Poor prenatal development, followed by rapid childhood growth, conveys greater cardiometabolic risk in later life. Microswine offspring exposed to perinatal maternal protein restriction [MPR; "low protein offspring" (LPO)] grow poorly in late-fetal/neonatal stages. After weaning to an ad libitum (AL) diet, LPO-AL exhibit accelerated growth and fat deposition rates with low adiponectin mRNA, despite low-normal body fat and small intra-abdominal adipocytes.
View Article and Find Full Text PDFCytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68-1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68-1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells.
View Article and Find Full Text PDFThe natural killer cell receptor NKG2D activates NK cells by engaging one of several ligands (NKG2DLs) belonging to either the MIC or ULBP families. Human cytomegalovirus (HCMV) UL16 and UL142 counteract this activation by retaining NKG2DLs and US18 and US20 act via lysomal degradation but the importance of NK cell evasion for infection is unknown. Since NKG2DLs are highly conserved in rhesus macaques, we characterized how NKG2DL interception by rhesus cytomegalovirus (RhCMV) impacts infection in vivo.
View Article and Find Full Text PDFTelomeric G-overhangs are required for the formation of the protective telomere structure and telomerase action. However, the mechanism controlling G-overhang generation at human telomeres is poorly understood. Here, we show that G-overhangs can undergo cell cycle-regulated changes independent of telomerase activity.
View Article and Find Full Text PDFStudies from budding yeast and ciliates have suggested that telomerase extension of telomeres requires the conventional DNA replication machinery, yet little is known about how DNA replication proteins regulate telomerase action in higher eukaryotic cells. Here we investigate the role of one of the DNA replication factors, flap endonuclease I (FEN1), in regulating telomerase activity in mammalian cells. FEN1 is a nuclease that plays an important role in DNA replication, repair, and recombination.
View Article and Find Full Text PDF