This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap.
View Article and Find Full Text PDFMethods Mol Biol
January 2020
Posttranslational acetylation modifications of proteins have important consequences for cell biology, including effects on protein trafficking and cellular localization as well as on the interactions of acetylated proteins with other proteins and macromolecules such as DNA. Experiments to uncover and characterize protein acetylation events have historically been more challenging than investigating another common posttranslational modification, protein phosphorylation. More recently, high-quality antibodies that recognize acetylated lysine residues present in acetylated proteins and improved proteomic methodologies have facilitated the discovery that acetylation occurs on numerous cellular proteins and allowed characterization of the dynamics and functional effects of many acetylation events.
View Article and Find Full Text PDFTelomeric abnormalities caused by loss of function of the RecQ helicase WRN are linked to the multiple premature ageing phenotypes that characterize Werner syndrome. Here we examine WRN's role in telomeric maintenance, by comparing its action on a variety of DNA structures without or with telomeric sequences. Our results show that WRN clearly prefers to act on strand invasion intermediates in a manner that favours strand invasion and exchange.
View Article and Find Full Text PDFWerner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS.
View Article and Find Full Text PDFRecent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication.
View Article and Find Full Text PDFExpansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C.
View Article and Find Full Text PDFCells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage.
View Article and Find Full Text PDFThe premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures.
View Article and Find Full Text PDFThe premature aging and cancer-prone disease Werner syndrome stems from loss of WRN protein function. WRN deficiency causes replication abnormalities, sensitivity to certain genotoxic agents, genomic instability and early replicative senescence in primary fibroblasts. As a RecQ helicase family member, WRN is a DNA-dependent ATPase and unwinding enzyme, but also possesses strand annealing and exonuclease activities.
View Article and Find Full Text PDFThe premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands.
View Article and Find Full Text PDFBackground: The cancer-prone and accelerated aging disease Werner syndrome is caused by loss of function of the WRN gene product that possesses ATPase, 3' to 5' helicase and 3' to 5' exonuclease activities. Although WRN has been most prominently suggested to function in telomere maintenance, resolution of replication blockage and/or recombinational repair, its exact role in DNA metabolism remains unclear. WRN is the only human RecQ family member to possess both helicase and exonuclease activity, but the mechanistic relationship between these activities is unknown.
View Article and Find Full Text PDFBackground: The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members) have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM.
View Article and Find Full Text PDFRecQ helicases are critical for maintaining genomic integrity. In this study, we show that three RecQ members (WRN, deficient in the Werner syndrome; BLM, deficient in the Bloom syndrome; and Drosophila melanogaster RecQ5b (dmRecQ5b)) possess a novel strand pairing activity. Furthermore, each of these enzymes combines this strand pairing activity with its inherent DNA unwinding capability to perform coordinated strand exchange.
View Article and Find Full Text PDFIn addition to increased DNA-strand exchange, a cytogenetic feature of cells lacking the RecQ-like BLM helicase is a tendency for telomeres to associate. We also report additional cellular and biochemical evidence for the role of BLM in telomere maintenance. BLM co-localizes and complexes with the telomere repeat protein TRF2 in cells that employ the recombination-mediated mechanism of telomere lengthening known as ALT (alternative lengthening of telomeres).
View Article and Find Full Text PDFThe cancer-prone and premature aging disease Werner syndrome is due to loss of WRN gene function. Cells lacking WRN demonstrate genomic instability, including telomeric abnormalities and undergo premature senescence, suggesting defects in telomere metabolism. This notion is strongly supported by our finding of physical and functional interactions between WRN and TRF2, a telomeric repeat binding factor essential for proper telomeric structure.
View Article and Find Full Text PDFThe loss of function of WRN, a DNA helicase and exonuclease, causes the premature aging disease Werner syndrome. A hallmark feature of cells lacking WRN is genomic instability typified by elevated illegitimate recombination events and accelerated loss of telomeric sequences. In this study, the activities of WRN were examined on a displacement loop (D-loop) DNA substrate that mimics an intermediate formed during the strand invasion step of many recombinational processes.
View Article and Find Full Text PDFWerner syndrome is a premature aging and cancer-prone hereditary disorder caused by deficiency of the WRN protein that harbors 3' -->5' exonuclease and RecQ-type 3' --> 5' helicase activities. To assess the possibility that WRN acts on partially melted DNA intermediates, we constructed a substrate containing a 21-nucleotide noncomplementary region asymmetrically positioned within a duplex DNA fragment. Purified WRN shows an extremely efficient exonuclease activity directed at both blunt ends of this substrate, whereas no activity is observed on a fully duplex substrate.
View Article and Find Full Text PDF