Exosomes are 30-150 nm extracellular vesicles mediating intercellular communication. Disease states can alter exosome composition affecting the message carried and thereby, its functional impact. The objective of this study was to identify proteins present in these vesicles in a mouse model of neuropathic pain induced by spared nerve injury (SNI).
View Article and Find Full Text PDFThere is a wide variety of extracellular vesicles (EVs) that differ in size and cargo composition. EVs isolated from human plasma or serum carry lipid, protein, and RNA cargo that provides insights to the regulation of normal physiological processes, and to pathological states. Specific populations of EVs have been proposed to contain protein and RNA cargo that are biomarkers for neurologic and systemic diseases.
View Article and Find Full Text PDFExtracellular vesicles have now emerged as key players in cell-to-cell communication. This is particularly important in the central nervous system, where glia-neuron cross-talk helps maintain normal neuronal function. Astrocyte-derived extracellular vesicles (ADEVs) secreted constitutively promote neurite outgrowth and neuronal survival.
View Article and Find Full Text PDFBackground And Purpose: Extracellular vesicles (EVs) are constitutively shed from cells and released by various stimuli. Their protein and RNA cargo are modified by the stimulus, and in disease conditions can carry pathological cargo involved in disease progression. Neutral sphingomyelinase 2 (nSMase2) is a major regulator in at least one of several independent routes of EV biogenesis, and its inhibition is a promising new therapeutic approach for neurological disorders.
View Article and Find Full Text PDFJ Extracell Vesicles
November 2018
Astrocytes are known to be critical regulators of neuronal function. However, relatively few mediators of astrocyte to neuron communication have been identified. Recent advancements in the biology of extracellular vesicles have begun to implicate astrocyte derived extracellular vesicles (ADEV) as mediators of astrocyte to neuron communication, suggesting that alterations in the release and/or composition of ADEVs could influence gliotransmission.
View Article and Find Full Text PDFMitochondrial dysfunction is one of the major contributors to neurodegenerative disorders including Parkinson disease. The mitochondrial permeability transition pore is a protein complex located on the mitochondrial membrane. Under cellular stress, the pore opens, increasing the release of pro-apoptotic proteins, and ultimately resulting in cell death.
View Article and Find Full Text PDFNuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that regulates the expression of a number of antioxidant and detoxifying genes that provide cellular protection against various stressors including reactive oxygen species (ROS). Nrf2 activity is tightly regulated by a cytoplasmic inhibitory protein called Kelch-like ECH-associated protein 1 (Keap1). The mechanism that controls Keap1 expression, however, remains poorly understood.
View Article and Find Full Text PDFParkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production.
View Article and Find Full Text PDFMounting evidence suggests that microRNA (miR) dysregulation contributes to neurodegenerative disorders including Parkinson's disease (PD). MiR-34b and miR-34c have been previously shown to be down-regulated in the brains of patients with PD. Here, we demonstrate that miR-34b and miR-34c repress the expression of α-synuclein (α-syn), a key protein in PD pathogenesis.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. Mitochondrial complex I impairment in PD is modeled in vitro by the susceptibility of dopaminergic neurons to the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+). In the present study, we demonstrate that microRNA-7 (miR-7), which is expressed in tyrosine hydroxylase-positive nigral neurons in mice and humans, protects cells from MPP+-induced toxicity in dopaminergic SH-SY5Y cells, differentiated human neural progenitor ReNcell VM cells, and primary mouse neurons.
View Article and Find Full Text PDFAberrant expression of microRNAs (miRs) has been implicated in the pathogenesis of several neurodegenerative disorders. In HIV-associated neurocognitive disorders (HAND), miR-142 was found to be upregulated in neurons and myeloid cells in the brain. We investigated the downstream effects of chronic miR-142 upregulation in neuronal cells by comparing gene expression in stable clones of the human neuroblastoma cell line BE(2)M17 expressing miR-142 to controls.
View Article and Find Full Text PDFMicroRNA (miR)-142 is up-regulated in the brain in HIV and SIV encephalitis (SIVE). We identified the cell types where miR-142 is up-regulated and its relevant downstream target. Fluorescent in situ hybridization combined with immunofluorescent labeling revealed that miR-142-3p and -5p are expressed within hippocampal neurons and myeloid cells in SIVE.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
June 2012
In the post-human genome project era, high throughput techniques to detect and computational algorithms to analyze differentially expressed genes have proven to be powerful tools for studying pathogenesis of neuroAIDS. Concurrently, discovery of non-coding RNAs and their role in development and disease has underscored the importance of examining the entire transcriptome instead of protein coding genes alone. Herein, we review the documented changes in brain RNA expression profiles in the non-human primate model of neuroAIDS (SIV infected monkeys) and compare the findings to those resulting from studies in post-mortem human samples of neuroAIDS.
View Article and Find Full Text PDFBackground: In Parkinson's disease there is progressive loss of dopamine containing neurons in the substantia nigra pars compacta. The neuronal damage is not limited to the substantia nigra but progresses to other regions of brain, leading to loss of motor control as well as cognitive abnormalities. The purpose of this study was to examine causes of progressive damage in the caudate nucleus, which plays a major role in motor coordination and cognition, in experimental Parkinson's disease.
View Article and Find Full Text PDF