The aim of this research was to develop a model for a solar refrigeration system (SRS) that utilizes an External Compound Parabolic Collector and a thermal energy storage system (TESS) for solar water heating in Chennai, India. The system parameters were optimized using TRNSYS software by varying factors such as collector area, mass flow rate of heat transfer fluid, and storage system volume and height. The resulting optimized system was found to meet 80% of hot water requirements for the application on an annual basis, with an annual collector energy efficiency of 58% and an annual TESS exergy efficiency of 64% for a discharge period of 6 h per day.
View Article and Find Full Text PDFThe current COVID-19 pandemic, with its numerous variants including Omicron which is 50-70% more transmissible than the previously dominant Delta variant, demands a fast, robust, cheap, and easily deployed identification strategy to reduce the chain of transmission, for which biosensors have been shown as a feasible solution at the laboratory scale. The use of nanomaterials has significantly enhanced the performance of biosensors, and the addition of CNTs has increased detection capabilities to an unrivaled level. Among the various CNT-based detection systems, CNT-based field-effect transistors possess ultra-sensitivity and low-noise detection capacity, allowing for immediate analyte determination even in the presence of limited analyte concentrations, which would be typical of early infection stages.
View Article and Find Full Text PDFCarbon nanotubes (CNTs), are safe, biocompatible, bioactive, and biodegradable materials, and have sparked a lot of attention due to their unique characteristics in a variety of applications, including medical and dye industries, paper manufacturing and water purification. CNTs also have a strong film-forming potential, permitting them to be widely employed in constructing sensors and biosensors. This review concentrates on the application of CNT-based nanocomposites in the production of electrochemical sensors and biosensors.
View Article and Find Full Text PDFCoronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission.
View Article and Find Full Text PDFThe availability of drinkable water, along with food and air, is a fundamental human necessity. Because of the presence of higher amounts of salt and pollution, direct use of water from sources such as lakes, sea, rivers, and subsurface water reservoirs is not normally suggested. Solar is still a basic technology that can use solar energy to transform accessible waste or brackish water into drinkable water.
View Article and Find Full Text PDFThe demand for fresh water is rapidly growing as a consequence of the increasing population and urbanization. Tubular solar still offers larger evaporative and condensing surface area as compared to single slope solar still. The aim of this study is to improve the performance of tubular solar still by employing eggshell powder (collected from Babcobb Broilers chicken) as the sensible energy storage material in form of bed, placed inside the basin of still to improve the water production.
View Article and Find Full Text PDFSolar energy is a one-of-a-kind renewable energy source that has many uses, and in the thermal applications, it is receiving more attention and is becoming more feasible. The present work presents numerical and experimental studies to investigate the performance of a parabolic trough solar concentrator (PTC) integrated with a thermal energy storage system. A new receiver design is built that stores thermal energy using phase change material (PCM).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
This work aims to explore the optical and thermal conversion characteristics of activated carbon-solar glycol nanofluids with various volume fractions namely 0.2, 0.4, and 0.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2022
This work aims to develop a novel nanofluid using Therminol-55 (T-55) as heat transfer fluid and multi-wall carbon nanotubes (MWCNTs) as dispersants with various volume concentrations of 0.05, 0.1, 0.
View Article and Find Full Text PDFThe SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2021
This study aims to augment the performance of a solar desalination unit. To experimental examine this idea, a modified solar still with three different microparticles doped in black paint-coated absorber were designed, fabricated, and tested in Jaipur, India. Three different microparticles such as copper, aluminum, and tin with particle size of 50-80 μm with weight concentration of 10% were doped in black paint and then coated on the absorber of solar still.
View Article and Find Full Text PDFSolar desalination is one of the most sustainable solutions to produce freshwater from brackish water. The present research work aims to experimentally investigate the effect of a V-shape concentrator integrated with solar still (SS). The V-shape concentrator integrated with the conventional solar still (CSS) is used to supply the saline water at elevated temperature to the basin of SS, which augments the freshwater yield compared to CSS.
View Article and Find Full Text PDFThis work aimed to explore a new technique for improving the performance of solar stills (SSs) through utilizing three different types of a new hybrid structure of heat localization materials (HSHLM) floating on the water surface to increase the evaporation rate as well as water production and minimize heat losses. The three types were exfoliated graphite flakes with wick (type A), carbon foam with wick (type B), and exfoliated graphite flakes with wick and carbon foam (type C). These hybrid structures had good features such as high absorption and hydrophilic capillary forces to interconnected pores for fluid flow through the structure.
View Article and Find Full Text PDFBackground: The growth rate of abdominal aortic aneurysms (AAA) can vary depending on age, baseline diameter, blood pressure, race, and history of smoking. Paradoxically, previous studies show evidence of a protective effect of diabetes on the rate of AAA expansion despite its well-established role in the morbidity and mortality of cardiovascular disease. This study aims to investigate the impact diabetes plays on AAA growth within a Hispanic population.
View Article and Find Full Text PDF