Publications by authors named "Amrit Kumar Jethi"

Supervised deep learning methods have shown great promise for making magnetic resonance (MR) imaging scans faster. However, these supervised deep learning models need large volumes of labelled data to learn valuable representations and produce high-fidelity MR image reconstructions. The data used to train these models are often fully-sampled raw MR data, retrospectively under-sampled to simulate different MR acquisition acceleration factors.

View Article and Find Full Text PDF

Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans.

View Article and Find Full Text PDF