Publications by authors named "Amri E"

Aims: Thermogenic adipocytes are able to dissipate energy as heat from lipids and carbohydrates through enhanced uncoupled respiration, due to UCP1 activity. PPAR family of transcription factors plays an important role in adipocyte biology. The purpose of this work was to characterize the role of PPARα and pemafibrate in the control of thermogenic adipocyte formation and function.

View Article and Find Full Text PDF

MicroRNAs play a pivotal role in the regulation of adipose tissue function and have emerged as promising therapeutic candidates for the management of obesity and associated comorbidities. Among them, miR-1 could be a potential biomarker for metabolic diseases and contribute to metabolic homeostasis. However, thorough research is required to fully elucidate the impact of miR-1 on human adipocyte thermogenesis and metabolism.

View Article and Find Full Text PDF

In the era of ubiquitous computing, the challenges imposed by the increasing demand for real-time data processing, security, and energy efficiency call for innovative solutions. The emergence of fog computing has provided a promising paradigm to address these challenges by bringing computational resources closer to data sources. Despite its advantages, the fog computing characteristics pose challenges in heterogeneous environments in terms of resource allocation and management, provisioning, security, and connectivity, among others.

View Article and Find Full Text PDF

Plant-based food interventions are promising therapeutic approaches for non-alcoholic fatty liver disease (NAFLD) treatment, and microRNAs (miRNAs) have emerged as functional bioactive components of dietary plants involved in cross-kingdom communication. Deeper investigations are needed to determine the potential impact of plant miRNAs in NAFLD. This study aimed to identify plant miRNAs that could eventually modulate the expression of human metabolic genes and protect against the progression of hepatic steatosis.

View Article and Find Full Text PDF

Background: Eculizumab, a humanized monoclonal antibody targeting the C5 complement protein, has been approved for the treatment of neuromyelitis optica spectrum disorders (NMOSD) in adult patients who are anti-aquaporin-4 (AQP4) antibody positive (Ab+). The aim of this study is to evaluate the long-term effectiveness and safety of eculizumab in French adults with NMOSD and to describe patients' characteristics, disability, and quality of life using data collected in a real-world setting.

Methods: This is the protocol for ECUP4, an ongoing prospective, observational, non-comparative, multicenter study conducted in 32 reference centers in France.

View Article and Find Full Text PDF

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio.

View Article and Find Full Text PDF

Animal models remain important for the study of human pathologies. The most widely used model (mouse) is an endothermic mammal like humans, maintained at ambient temperatures (22 °C). Its energy metabolism is overactivated, a situation rarely observed in humans thanks to various adaptations (clothing, heating…).

View Article and Find Full Text PDF

Background: Edible plants can exert anti-inflammatory activities in humans, being potentially useful in the treatment of inflammatory diseases. Plant-derived microRNAs have emerged as cross-kingdom gene expression regulators and could act as bioactive molecules involved in the beneficial effects of some edible plants. We investigated the role of edible plant-derived microRNAs in the modulation of pro-inflammatory human genes.

View Article and Find Full Text PDF

Cold-induced brown adipose tissue (BAT) activation is considered to improve metabolic health. In murine BAT, cold increases the fundamental molecule for mitochondrial function, nicotinamide adenine dinucleotide (NAD), but limited knowledge of NAD metabolism during cold in human BAT metabolism exists. We show that cold increases the serum metabolites of the NAD salvage pathway (nicotinamide and 1-methylnicotinamide) in humans.

View Article and Find Full Text PDF

Oxytocin (OT), a neuropeptide best known for its role in emotional and social behaviors, has been linked to osteoarthritis (OA). This study aimed to investigate the serum OT level in hip and/or knee OA patients and to study its association with disease progression. Patients from the KHOALA cohort with symptomatic hip and/or knee OA (Kellgren and Lawrence (KL) scores of 2 and 3) and follow-up at 5 years were included in this analysis.

View Article and Find Full Text PDF

Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis.

View Article and Find Full Text PDF

In hepatocytes, peroxisome proliferator-activated receptor α (PPARα) orchestrates a genomic and metabolic response required for homeostasis during fasting. This includes the biosynthesis of ketone bodies and of fibroblast growth factor 21 (FGF21). Here we show that in the absence of adipose triglyceride lipase (ATGL) in adipocytes, ketone body and FGF21 production is impaired upon fasting.

View Article and Find Full Text PDF

Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand.

View Article and Find Full Text PDF

Activation of thermogenic brown and beige adipocytes is considered as a strategy to improve metabolic control. Here, we identify GPR180 as a receptor regulating brown and beige adipocyte function and whole-body glucose homeostasis, whose expression in humans is associated with improved metabolic control. We demonstrate that GPR180 is not a GPCR but a component of the TGFβ signalling pathway and regulates the activity of the TGFβ receptor complex through SMAD3 phosphorylation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs), a class of small, non-coding RNA molecules, play an important role in the posttranscriptional regulation of gene expression, thereby influencing important cellular functions. In adipocytes, miRNAs show import regulatory features and are described to influence differentiation as well as metabolic, endocrine, and inflammatory functions. We previously identified miR-27a being upregulated under inflammatory conditions in human adipocytes and aimed to elucidate its function in adipocyte biology.

View Article and Find Full Text PDF

Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for specifically in the pancreas.

View Article and Find Full Text PDF

Oxytocin (OT) is involved in breastfeeding and childbirth and appears to play a role in regulating the bone matrix. OT is synthesized in the supraoptic and paraventricular nuclei of the hypothalamus and is released in response to numerous stimuli. It also appears to be produced by osteoblasts in the bone marrow, acting as a paracrine-autocrine regulator of bone formation.

View Article and Find Full Text PDF

The activation of thermogenesis in adipose tissue has emerged as an important target for the development of novel anti-obesity therapies. Using multi-well isothermal microcalorimetry, we have demonstrated that mature murine brown and brite adipocytes produce quantifiable heat upon β-AR stimulation, independently of any anaerobic mechanisms. Additionally, in brite adipocytes lacking UCP1 protein, β-AR stimulation still induces heat production, albeit to a much lower extent than in their wildtype counterparts, suggesting that UCP1 is an essential component of adrenergic induced thermogenesis in murine brite adipocytes exvivo.

View Article and Find Full Text PDF

Objective: Activation of brown adipose tissue (BAT) in humans has been proposed as a new treatment approach for combating obesity and its associated diseases, as BAT participates in the regulation of energy homeostasis as well as glucose and lipid metabolism. Genetic contributors driving brown adipogenesis in humans have not been fully understood.

Methods: Profiling the gene expression of progenitor cells from subcutaneous and deep neck adipose tissue, we discovered new secreted factors with potential regulatory roles in white and brown adipogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity is increasing globally, and recent research highlights that fathers with poor diets can negatively impact their offspring's metabolic health.
  • A study using mice demonstrated that multiple generations of fathers fed a Western diet led to increased fat mass and metabolic issues in their descendants, even when those offspring were fed a healthier diet.
  • Interestingly, while these offspring developed an 'overweight' phenotype without certain metabolic diseases, sperm RNA injection studies indicate that while sperm RNA can trigger epigenetic changes related to metabolism, it does not sustain those changes over the long term.
View Article and Find Full Text PDF

Adipocytes are specialized cells with pleiotropic roles in physiology and pathology. Several types of fat cells with distinct metabolic properties coexist in various anatomically defined fat depots in mammals. White, beige, and brown adipocytes differ in their handling of lipids and thermogenic capacity, promoting differences in size and morphology.

View Article and Find Full Text PDF

Scope: Brown and brite adipocytes within the mammalian adipose organ provide non-shivering thermogenesis and thus, have an exceptional capacity to dissipate chemical energy as heat. Polyunsaturated fatty acids (PUFA) of the n3-series, abundant in fish oil, have been repeatedly demonstrated to enhance the recruitment of thermogenic capacity in these cells, consequently affecting body adiposity and glucose tolerance. These effects are scrutinized in mice housed in a thermoneutral environment and in a human dietary intervention trial.

View Article and Find Full Text PDF

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity.

View Article and Find Full Text PDF