Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that Claudin-2 is functionally required for colorectal cancer liver metastasis and that Claudin-2 expression in primary colorectal cancers is associated with poor overall and liver metastasis-free survival. We have examined the role of Claudin-2, and other claudin family members, as potential prognostic biomarkers of the desmoplastic and replacement histopathological growth pattern associated with colorectal cancer liver metastases.
View Article and Find Full Text PDFCurrent treatment for metastatic disease targets angiogenesis. With the increasing data demonstrating that cancer cells do not entirely rely on angiogenesis but hijack the existing vasculature through mechanisms such as co-option of existing blood vessels, identification of targets has become of utmost importance. Our study looks at the vasculature of chemonaïve and treated colorectal carcinoma liver metastases (CRCLMs) to obtain a basic understanding of the microvessel density, type of vasculature (mature versus immature), and correlation with histopathological growth patterns that demonstrate unique patterns of angiogenesis.
View Article and Find Full Text PDFDrug resistance is a major hurdle in oncology. Responses of acute myeloid leukaemia (AML) patients to cytarabine (Ara-C)-based therapies are often short lived with a median overall survival of months. Therapies are under development to improve outcomes and include targeting the eukaryotic translation initiation factor (eIF4E) with its inhibitor ribavirin.
View Article and Find Full Text PDFThe eukaryotic translation initiation factor eIF4E is a potent oncogene that promotes the nuclear export and translation of specific transcripts. Here, we have discovered that eIF4E alters the cytoplasmic face of the nuclear pore complex (NPC), which leads to enhanced mRNA export of eIF4E target mRNAs. Specifically, eIF4E substantially reduces the major component of the cytoplasmic fibrils of the NPC, RanBP2, relocalizes an associated nucleoporin, Nup214, and elevates RanBP1 and the RNA export factors, Gle1 and DDX19.
View Article and Find Full Text PDFThe eukaryotic translation initiation factor eIF4E is elevated in 30% of malignancies including M4/M5 subtypes of acute myeloid leukemia (AML). The oncogenic potential of eIF4E arises from its ability to bind the 7-methyl guanosine (m(7)G) cap on mRNAs, thereby selectively enhancing eIF4E-dependent nuclear mRNA export and translation. We tested the clinical efficacy of targeting eIF4E in M4/M5 AML patients with a physical mimic of the m(7)G cap, ribavirin.
View Article and Find Full Text PDFThe eukaryotic translation initiation factor eIF4E is dysregulated in many cancers. eIF4E, through its mRNA export and translation functions, combinatorially modulates the expression of genes involved in Akt dependent survival signaling. For these activities, eIF4E must bind the 7-methyl guanosine (m(7)G) cap moiety on the 5'-end of mRNAs.
View Article and Find Full Text PDFEukaryotic initiation factor 4E (eIF4E) promotes cellular proliferation and can rescue cells from apoptotic stimuli such as serum starvation. However, the mechanisms underlying apoptotic rescue are not well understood. In this study, we demonstrate that eIF4E overexpression leads to enhanced survival signaling through Akt and that eIF4E requires Akt1 to rescue serum-deprived fibroblasts.
View Article and Find Full Text PDF