Covalent organic frameworks (COFs), which have layered stacking structures, extended π-conjugation, and periodic frameworks have become a promising class of materials for a wide range of applications. However, their synthetic pathways frequently need high temperatures, enclosed systems under high pressures, an inert atmosphere, and extended reaction time, which restrict their practicality in real-world applications. Herein, the use of gamma irradiation is presented to synthesize highly crystalline COFs at room temperature under an open-air condition within a short time.
View Article and Find Full Text PDFDouble-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR.
View Article and Find Full Text PDFAtomically dispersed iron sites on nitrogen-doped carbon (Fe-NC) are the most active Pt-group-metal-free catalysts for oxygen reduction reaction (ORR). However, due to oxidative corrosion and the Fenton reaction, Fe-NC catalysts are insufficiently active and stable. Herein, w e demonstrated that the axial Cl-modified Fe-NC (Cl-Fe-NC) electrocatalyst is active and stable for the ORR in acidic conditions with high H O tolerance.
View Article and Find Full Text PDFNanoscale zerovalent iron (NZVI) features potential application to biomedicine, (electro-/photo)catalysis, and environmental remediation. However, multiple-synthetic steps and limited ZVI content prompt the development of a novel strategy for efficient preparation of NZVI composites. Herein, a dinitrosyl iron complex [(NMDA)Fe(NO)] () was explored as a molecular precursor for one-pot photosynthesis of a cubic Fe@FeO core-shell nanoparticle (ZVI% = 60%) well-dispersed in an N-doping carbonaceous polymer (NZVI@NC).
View Article and Find Full Text PDFThe widespread use of energy storage technologies has created a high demand for the development of novel anode materials in Li-ion batteries (LIBs) with high areal capacity and faster electron-transfer kinetics. In this work, carbon-coated CuZnSnS with a hierarchical 3D structure (CZTS@C) is used as an anode material for LIBs. The CZTS@C microstructures with enhanced electrical conductivity and improved Li-ion diffusivity exhibit high areal and gravimetric capacities of 2.
View Article and Find Full Text PDFWe report the phase evolution and thermoelectric properties of a series of Co(GeTe)Sb ( = 0-0.20) compositions synthesized by mechanical alloying. Pristine ternary Co(GeTe) skutterudite crystallizes in the rhombohedral symmetry (3̅), and Sb doping induces a structural transition to the cubic phase (ideal skutterudite, 3̅).
View Article and Find Full Text PDFEffects of electronic and atomic structures of V-doped 2D layered SnS are studied using X-ray spectroscopy for the development of photocatalytic/photovoltaic applications. Extended X-ray absorption fine structure measurements at V K-edge reveal the presence of VO and VS bonds which form the intercalation of tetrahedral OVS sites in the van der Waals (vdW) gap of SnS layers. X-ray absorption near-edge structure (XANES) reveals not only valence state of V dopant in SnS is ≈4 but also the charge transfer (CT) from V to ligands, supported by V L resonant inelastic X-ray scattering.
View Article and Find Full Text PDFSupercapacitors store charge by ion adsorption or fast redox reactions on the surface of porous materials. One of the bottlenecks in this field is the development of biocompatible and high-rate supercapacitor devices by scalable fabrication processes. Herein, a Ti-rich anatase TiO material that addresses the above-mentioned challenges is reported.
View Article and Find Full Text PDFPhotocatalytic formation of hydrocarbons using solar energy via artificial photosynthesis is a highly desirable renewable-energy source for replacing conventional fossil fuels. Using an L-cysteine-based hydrothermal process, here we synthesize a carbon-doped SnS (SnS-C) metal dichalcogenide nanostructure, which exhibits a highly active and selective photocatalytic conversion of CO to hydrocarbons under visible-light. The interstitial carbon doping induced microstrain in the SnS lattice, resulting in different photophysical properties as compared with undoped SnS.
View Article and Find Full Text PDF