The serotonin (5-hydroxytryptamine, 5-HT) transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) is thought to alter 5-HT signaling and contribute to behavioral and cognitive phenotypes in depression as well as Alzheimer disease (AD). We explored how well the short () and long () alleles of the 5-HTTLPR align with serotoninergic indices in 60 autopsied cortical samples from early-onset AD/EOAD and late-onset AD/LOAD donors, and age- and sex-matched controls. Stratifying data by either diagnosis-by-genotype or by sex-by-genotype revealed that the donor's 5-HTTLPR genotype, i.
View Article and Find Full Text PDFSCO1 is a ubiquitously expressed, mitochondrial protein with essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper homeostasis. SCO1 patients present with severe forms of early onset disease, and ultimately succumb from liver, heart or brain failure. However, the inherent susceptibility of these tissues to SCO1 mutations and the clinical heterogeneity observed across SCO1 pedigrees remain poorly understood phenomena.
View Article and Find Full Text PDFDeath Receptor 5 (DR5) is a promising target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells. However, the therapeutic usefulness of DR5 agonists is currently limited by the frequent resistance of malignant tumours to its activation. The identification of molecular mechanisms that determine outcomes of DR5 action is therefore crucial for improving the efficiency of DR5-activating reagents in cancer treatment.
View Article and Find Full Text PDFChromosomal Instability (CIN) is regarded as a unifying feature of heterogeneous tumor populations, driving intratumoral heterogeneity. Polo-Like Kinase 1 (PLK1), a serine-threonine kinase that is often overexpressed across multiple tumor types, is one of the key regulators of CIN and is considered as a potential therapeutic target. However, targeting PLK1 has remained a challenge due to the off-target effects caused by the inhibition of other members of the polo-like family.
View Article and Find Full Text PDFOne of the most striking features of plant mitochondria when visualized in living tissue is their dynamism. The beauty of cytoplasmic streaming, driving, and being driven by the motility of mitochondria and other small organelles belies the complexity of the process. Equally, capturing that dynamism and investigating the genes, proteins, and mechanisms underpinning the processes using molecular cell biology and bioimaging is a complex process.
View Article and Find Full Text PDFHuman SCO1 fulfills essential roles in cytochrome c oxidase (COX) assembly and the regulation of copper (Cu) homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell.
View Article and Find Full Text PDFMitochondria are defining components of most eukaryotes. However, higher plant mitochondria differ biochemically, morphologically, and dynamically from those in other eukaryotes. FRIENDLY, a member of the CLUSTERED MITOCHONDRIA superfamily, is conserved among eukaryotes and is required for correct distribution of mitochondria within the cell.
View Article and Find Full Text PDFLigand-induced internalisation and subsequent downregulation of receptor tyrosine kinases (RTKs) serve to determine biological outputs of their signalling. Intrinsically kinase-deficient RTKs control a variety of biological responses, however, the mechanism of their downregulation is not well understood and its analysis is focused exclusively on the ErbB3 receptor. The Eph group of RTKs is represented by the EphA and EphB subclasses.
View Article and Find Full Text PDF