Although aberrant activation of the KRAS and PI3K pathway alongside TP53 mutations account for frequent aberrations in human gastric cancers, neither the sequence nor the individual contributions of these mutations have been clarified. Here, we establish an allelic series of mice to afford conditional expression in the glandular epithelium of Kras;Pik3ca or Trp53 and/or ablation of Pten or Trp53. We find that Kras;Pik3ca is sufficient to induce adenomas and that lesions progress to carcinoma when also harboring Pten deletions.
View Article and Find Full Text PDFA critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development.
View Article and Find Full Text PDFAberrant expression of the oncoprotein c-Myc (Myc) is frequently observed in solid tumors and is associated with reduced overall survival. In addition to well-recognized cancer cell-intrinsic roles of Myc, studies have also suggested tumor-promoting roles for Myc in cells of the tumor microenvironment, including macrophages and other myeloid cells. Here, we benchmark inactivation in tumor cells against the contribution of its expression in myeloid cells of murine hosts that harbor endogenous or allograft tumors.
View Article and Find Full Text PDFMultiplexed immunohistochemistry enables analysis of cellular and signaling events in the context of an intact organ. Here, we describe protocols for applying multiplexed immunohistochemistry to the mouse thymus. In particular, we describe how to identify cells at the specific differentiation stage known as β-selection, and to monitor pre-TCR signaling and the cellular response at that stage.
View Article and Find Full Text PDFInflammatory breast cancer (IBC) describes a highly aggressive form of breast cancer of diverse molecular subtypes and clonal heterogeneity across individual tumors. Accordingly, IBC is recognized by its clinical signs of inflammation, associated with expression of interleukin (IL)-6 and other inflammatory cytokines. Here, we investigate whether sub-clonal differences between expression of components of the IL-6 signaling cascade reveal a novel role for IL-6 to mediate a proliferative response in trans using two prototypical IBC cell lines.
View Article and Find Full Text PDFThe β-selection checkpoint of T cell development tests whether the cell has recombined its genomic DNA to produce a functional T cell receptor β (TCRβ). Passage through the β-selection checkpoint requires the nascent TCRβ protein to mediate signaling through a pre-TCR complex. In this study, we show that developing T cells at the β-selection checkpoint establish an immunological synapse in in vitro and in situ, resembling that of the mature T cell.
View Article and Find Full Text PDFCell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses.
View Article and Find Full Text PDFThe emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response.
View Article and Find Full Text PDFROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs).
View Article and Find Full Text PDFIntroduction: Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk.
View Article and Find Full Text PDF