Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure.
View Article and Find Full Text PDFNanocomposite materials were prepared by compounding polypropylene (PP) with zinc oxide (ZnO) nanoparticles, using a twin-screw extruder. The compound was molded by injection molding to form dumbbell-shaped specimens. The influence of ZnO nanoparticle content on the morphology, mechanical properties, chemical structure, photocatalytic activity, and antibacterial properties of the obtained nanocomposites was investigated.
View Article and Find Full Text PDF