Background/objectives: Children with Autism Spectrum Disorder (ASD) face challenges in social communication due to difficulties in considering context, processing information, and interpreting social cues. This study aims to explore the neural processes related to pragmatic language communication in children with ASD and address the research question of how functional brain connectivity operates during complex pragmatic language tasks.
Methods: We examined differences in brain functional connectivity between children with ASD and typically developing peers while they engaged in video recordings of spoken language tasks.
Autism Spectrum Disorder (ASD) is characterized by both atypical functional brain connectivity and cognitive challenges across multiple cognitive domains. The relationship between task-dependent brain connectivity and cognitive abilities, however, remains poorly understood. In this study, children with ASD and their typically developing (TD) peers engaged in semantic and pragmatic language tasks while their task-dependent brain connectivity was mapped and compared.
View Article and Find Full Text PDFIn the last 50 years, the study of brain development has brought major discoveries to education and medicine, changing the lives of millions of children and families. However, collecting behavioral and neurophysiological data from children has specific challenges, such as high rates of data loss and participant dropout. We have developed a science camp method to collect data from children using the benefits of positive peer interactions and interactive and engaging activities, to allow researchers to better collect data repeatedly and reliably from groups of children.
View Article and Find Full Text PDFChildren with autism spectrum disorder (ASD) experience difficulties with social communication, making it challenging to interpret contextual information that aids in accurately interpreting language. To investigate how the brain processes the contextual information and how this is different in ASD, we compared event-related potentials (ERPs) in response to processing visual and auditory congruent and incongruent information. Two groups of children participated in the study: 37 typically developing children and 15 children with ASD (age range = 6 to 12).
View Article and Find Full Text PDFThe neural underpinnings of humans' ability to process faces and how it changes over typical development have been extensively studied using paradigms where face stimuli are oversimplified, isolated, and decontextualized. The prevalence of this approach, however, has resulted in limited knowledge of face processing in ecologically valid situations, in which faces are accompanied by contextual information at multiple time scales. In the present study, we use a naturalistic movie paradigm to investigate how neuromagnetic activation and phase synchronization elicited by faces from movie scenes in humans differ between children and adults.
View Article and Find Full Text PDF