Publications by authors named "Amparo Alonso-Betanzos"

Dietary Restriction (DR) is one of the most popular anti-ageing interventions; recently, Machine Learning (ML) has been explored to identify potential DR-related genes among ageing-related genes, aiming to minimize costly wet lab experiments needed to expand our knowledge on DR. However, to train a model from positive (DR-related) and negative (non-DR-related) examples, the existing ML approach naively labels genes without known DR relation as negative examples, assuming that lack of DR-related annotation for a gene represents evidence of absence of DR-relatedness, rather than absence of evidence. This hinders the reliability of the negative examples (non-DR-related genes) and the method's ability to identify novel DR-related genes.

View Article and Find Full Text PDF

Classic embedded feature selection algorithms are often divided in two large groups: tree-based algorithms and LASSO variants. Both approaches are focused in different aspects: while the tree-based algorithms provide a clear explanation about which variables are being used to trigger a certain output, LASSO-like approaches sacrifice a detailed explanation in favor of increasing its accuracy. In this paper, we present a novel embedded feature selection algorithm, called End-to-End Feature Selection (E2E-FS), that aims to provide both accuracy and explainability in a clever way.

View Article and Find Full Text PDF

The number of interconnected devices, such as personal wearables, cars, and smart-homes, surrounding us every day has recently increased. The Internet of Things devices monitor many processes, and have the capacity of using machine learning models for pattern recognition, and even making decisions, with the added advantage of diminishing network congestion by allowing computations near to the data sources. The main restriction is the low computation capacity of these devices.

View Article and Find Full Text PDF

In this study, we analyze the capability of several state of the art machine learning methods to predict whether patients diagnosed with CoVid-19 (CoronaVirus disease 2019) will need different levels of hospital care assistance (regular hospital admission or intensive care unit admission), during the course of their illness, using only demographic and clinical data. For this research, a data set of 10,454 patients from 14 hospitals in Galicia (Spain) was used. Each patient is characterized by 833 variables, two of which are age and gender and the other are records of diseases or conditions in their medical history.

View Article and Find Full Text PDF

Aims: Both left ventricular (LV) diastolic dysfunction (LVDD) and hypertrophy (LVH) as assessed by echocardiography are independent prognostic markers of future cardiovascular events in the community. However, selective screening strategies to identify individuals at risk who would benefit most from cardiac phenotyping are lacking. We, therefore, assessed the utility of several machine learning (ML) classifiers built on routinely measured clinical, biochemical, and electrocardiographic features for detecting subclinical LV abnormalities.

View Article and Find Full Text PDF

This paper presents a unified propagation method for dealing with both the classic Eikonal equation, where the motion direction does not affect the propagation, and the more general static Hamilton-Jacobi equations, where it does. While classic Fast Marching Method (FMM) techniques achieve the solution to the Eikonal equation with a O(M log M) (or O(M) assuming some modifications), solving the more general static Hamilton-Jacobi equation requires a higher complexity. The proposed framework maintains the O(M log M) complexity for both problems, while achieving higher accuracy than available state-of-the-art.

View Article and Find Full Text PDF

The current situation in microarray data analysis and prospects for the future are briefly discussed in this chapter, in which the competition between microarray technologies and high-throughput technologies is considered under a data analysis view. The up-to-date limitations of DNA microarrays are important to forecast challenges and future trends in microarray data analysis; these include data analysis techniques associated with an increasing sample sizes, new feature selection methods, deep learning techniques, covariate significance testing as well as false discovery rate methods, among other procedures for a better interpretability of the results.

View Article and Find Full Text PDF

A typical characteristic of microarray data is that it has a very high number of features (in the order of thousands) while the number of examples is usually less than 100. In the context of microarray classification, this poses a challenge for machine learning methods, which can suffer overfitting and thus degradation in their performance. A common solution is to apply a dimensionality reduction technique before classification, to reduce the number of features.

View Article and Find Full Text PDF

The advent of DNA microarray datasets has stimulated a new line of research both in bioinformatics and in machine learning. This type of data is used to collect information from tissue and cell samples regarding gene expression differences that could be useful for disease diagnosis or for distinguishing specific types of tumor. Microarray data classification is a difficult challenge for machine learning researchers due to its high number of features and the small sample sizes.

View Article and Find Full Text PDF

Medicine will experience many changes in the coming years because the so-called "medicine of the future" will be increasingly proactive, featuring four basic elements: predictive, personalized, preventive, and participatory. Drivers for these changes include the digitization of data in medicine and the availability of computational tools that deal with massive volumes of data. Thus, the need to apply machine-learning methods to medicine has increased dramatically in recent years while facing challenges related to an unprecedented large number of clinically relevant features and highly specific diagnostic tests.

View Article and Find Full Text PDF

Background: Heart failure (HF) manifests as at least two subtypes. The current paradigm distinguishes the two by using both the metric ejection fraction (EF) and a constraint for end-diastolic volume. About half of all HF patients exhibit preserved EF.

View Article and Find Full Text PDF

Dry eye is a symptomatic disease which affects a wide range of population and has a negative impact on their daily activities. Its diagnosis can be achieved by analyzing the interference patterns of the tear film lipid layer and by classifying them into one of the Guillon categories. The manual process done by experts is not only affected by subjective factors but is also very time consuming.

View Article and Find Full Text PDF

A technique for adjusting a minimum volume set of covering ellipsoids technique is elaborated. Solutions to this problem have potential application in one-class classification and clustering problems. Its main original features are: 1) It avoids the direct evaluation of determinants by using diagonalization properties of the involved matrices, 2) it identifies and removes outliers from the estimation process, 3) it avoids binary variables resulting from the combinatorial character of the assignment problem that are replaced by continuous variables in the range [0,1], 4) the problem can be solved by a bilevel algorithm that in its first level determines the ellipsoids and in its second level reassigns the data points to ellipsoids and identifies outliers based on an algorithm that forces the Karush-Kuhn-Tucker conditions to be satisfied.

View Article and Find Full Text PDF

Gene-expression microarray is a novel technology that allows the examination of tens of thousands of genes at a time. For this reason, manual observation is not feasible and machine learning methods are progressing to face these new data. Specifically, since the number of genes is very high, feature selection methods have proven valuable to deal with these unbalanced-high dimensionality and low cardinality-data sets.

View Article and Find Full Text PDF

A new methodology for learning the topology of a functional network from data, based on the ANOVA decomposition technique, is presented. The method determines sensitivity (importance) indices that allow a decision to be made as to which set of interactions among variables is relevant and which is irrelevant to the problem under study. This immediately suggests the network topology to be used in a given problem.

View Article and Find Full Text PDF

Objectives: This paper presents a novel approach for sleep apnea classification. The goal is to classify each apnea in one of three basic types: obstructive, central and mixed.

Materials And Methods: Three different supervised learning methods using a neural network were tested.

View Article and Find Full Text PDF

The article presents a method for learning the weights in one-layer feedforward neural networks minimizing either the sum of squared errors or the maximum absolute error, measured in the input scale. This leads to the existence of a global optimum that can be easily obtained solving linear systems of equations or linear programming problems, using much less computational power than the one associated with the standard methods. Another version of the method allows computing a large set of estimates for the weights, providing robust, mean or median, estimates for them, and the associated standard errors, which give a good measure for the quality of the fit.

View Article and Find Full Text PDF

The validation of a software product is a fundamental part of its development, and focuses on an analysis of whether the software correctly resolves the problems it was designed to tackle. Traditional approaches to validation are based on a comparison of results with what is called a gold standard. Nevertheless, in certain domains, it is not always easy or even possible to establish such a standard.

View Article and Find Full Text PDF