The ongoing COVID-19 pandemic has led to the emergence of new SARS-CoV-2 variants as a result of continued host-virus interaction and viral genome mutations. These variants have been associated with varying levels of transmissibility and disease severity. We investigated the phenotypic profiles of six SARS-CoV-2 variants (WT, D614G, Alpha, Beta, Delta, and Omicron) in Calu-3 cells, a human lung epithelial cell line.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread globally, and scientists around the world are currently studying the virus intensively in order to fight against the on-going pandemic of the virus. To do so, SARS-CoV-2 is typically grown in the lab to generate viral stocks for various kinds of experimental investigations. However, accumulating evidence suggests that such viruses often undergo cell culture adaptation.
View Article and Find Full Text PDFBackground: The outbreak of COVID-19 has led to the suffering of people around the world, with an inaccessibility of specific and effective medication. Fingerroot extract, which showed in vitro anti-SARS-CoV-2 activity, could alleviate the deficiency of antivirals and reduce the burden of health systems.
Aim Of Study: In this study, we conducted an experiment in SARS-CoV-2-infected hamsters to determine the efficacy of fingerroot extract in vivo.
Determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is important in guiding the infection control and differentiating between reinfection and persistent viral RNA. Although viral culture is the gold standard to determine viral infectivity, the method is not practical. We studied the kinetics of SARS-CoV-2 total RNAs and subgenomic RNAs (sgRNAs) and their potential role as surrogate markers of viral infectivity.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic severely impacts health, economy, and society worldwide. Antiviral drugs against SARS-CoV-2 are urgently needed to cope with this global crisis. It has been found that the biogenesis and release mechanisms of viruses share a common pathway with extracellular vesicles (EVs).
View Article and Find Full Text PDFThe coronaviruses disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has become a major health problem, affecting more than 50 million people with over one million deaths globally. Effective antivirals are still lacking. Here, we optimized a high-content imaging platform and the plaque assay for viral output study using the legitimate model of human lung epithelial cells, Calu-3, to determine the anti-SARS-CoV-2 activity of extract and its major component, andrographolide.
View Article and Find Full Text PDFSince December 2019, the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused severe pneumonia, a disease named COVID-19, that became pandemic and created an acute threat to public health. The effective therapeutics are in urgent need. Here, we developed a high-content screening for the antiviral candidates using fluorescence-based SARS-CoV-2 nucleoprotein detection in Vero E6 cells coupled with plaque reduction assay.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a mosquito-borne virus that causes arthralgic fever. Fibroblast-like synoviocytes play a key role in joint damage in inflammatory arthritides and can additionally serve as target cells for CHIKV infection. To gain a better understanding of CHIKV-induced arthralgia, the interaction between CHIKV and synoviocytes was investigated at the protein level.
View Article and Find Full Text PDFDengue viruses (DENVs) have threatened 2/3 of the world population for decades. Thus, combating DENV infection with either antiviral therapy or protective vaccination is an urgent goal. In the present study, we investigated the anti-DENV activity of insect cell-derived anionic septapeptides from C6/36 mosquito cell cultures persistently infected with DENV.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2014
Antibodies were prepared by immunizing mice with empty, immature particles of human enterovirus 71 (EV71), a picornavirus that causes severe neurological disease in young children. The capsid structure of these empty particles is different from that of the mature virus and is similar to "A" particles encountered when picornaviruses recognize a potential host cell before genome release. The monoclonal antibody E18, generated by this immunization, induced a conformational change when incubated at temperatures between 4 °C and 37 °C with mature virus, transforming infectious virions into A particles.
View Article and Find Full Text PDFVirus evolution facilitates the emergence of viruses with unpredictable impacts on human health. This study investigated intra-host variations of the receptor-binding domain (RBD) of the haemagglutinin (HA) gene of the avian H5N1 viruses obtained from the 2004 and 2005 epidemics. The results showed that the mutation frequency of the RBD ranged from 0.
View Article and Find Full Text PDFAvian influenza viruses are a possible threat to human health as they may cause an influenza pandemic. Asian open-bill storks are migratory birds that brought H5N1 viruses into Thailand during the 2004-2005 epidemic. However, to date, there are no reports of direct transmission of stork-derived H5N1 viruses to Thais.
View Article and Find Full Text PDF