Self-catalyzed DNA depurination is a sequence-specific physiological mechanism mediated by spontaneous extrusion of a stem-loop catalytic intermediate. Hydrolysis of the 5'G residue of the 5'GA/TGG loop and of the first 5'A residue of the 5'GAGA loop, together with particular first stem base pairs, specifies their hydrolysis without involving protein, cofactor, or cation. As such, this mechanism is the only known DNA catalytic activity exploited by nature.
View Article and Find Full Text PDFThe human β-globin, δ-globin and ɛ-globin genes contain almost identical coding strand sequences centered about codon 6 having potential to form a stem-loop with a 5'GAGG loop. Provided with a sufficiently stable stem, such a structure can self-catalyze depurination of the loop 5'G residue, leading to a potential mutation hotspot. Previously, we showed that such a hotspot exists about codon 6 of β-globin, with by far the highest incidence of mutations across the gene, including those responsible for 6 anemias (notably Sickle Cell Anemia) and β-thalassemias.
View Article and Find Full Text PDFThe human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene.
View Article and Find Full Text PDFThe sequence variation tolerated within the stem-loop-forming genomic consensus sequence for self-catalyzed site-specific depurination of G residues is explored. The variation in self-depurination kinetics with sequence changes in the loop residues and stem base pairs, as well as with pH, provides insights into the self-catalytic mechanism. The observations suggest that self-catalyzed depurination of the 5' G residue of the loop consensus sequence 5'-G(T/A)GG-3' probably involves formation of some intraloop hydrogen-bonded base pair with the 3'-terminal G residue; although the electronic structure of both these G residues is retained, their 2-amino substituents are not critical for that interaction.
View Article and Find Full Text PDFA major variety of "spontaneous" genomic damage is endogenous generation of apurinic sites. Depurination rates vary widely across genomes, occurring with higher frequency at "depurination hot spots." Recently, we discovered a site-specific self-catalyzed depurinating activity in short (14-18 nucleotides) DNA stem-loop-forming sequences with a 5'-G(T/A)GG-3' loop and T·A or G·C as the first base pair at the base of the loop; the 5'-G residue of the loop self-depurinates at least 10(5)-fold faster than random "spontaneous" depurination at pH 5.
View Article and Find Full Text PDFA significant level of correction of the mutation responsible for sickle cell anemia has been achieved in monkey COS-7 cells on a plasmid containing a beta-globin gene fragment. The plasmid was treated in vitro with a nucleic acid 'third strand' bearing a terminal photoreactive psoralen moiety that binds immediately adjacent to the mutant base pair. Following covalent attachment of the psoralen by monoadduct or diadduct formation to the mutant T-residue on the coding strand, the treated plasmid was transfected into the cells, which were then incubated for 48 h to allow the cellular DNA repair mechanisms to remove the photoadducts.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2006
A self-catalyzed, site-specific guanine-depurination activity has been found to occur in short gene sequences with a potential to form a stem-loop structure. The critical features of that catalytic intermediate are a 5'-G-T-G-G-3' loop and an adjacent 5'-T.A-3' base pair of a short duplex stem stable enough to fix the loop structure required for depurination of its 5'-G residue.
View Article and Find Full Text PDFUsing a psoralen delivery system mediated by a DNA third strand that binds selectively to linear target duplexes immediately downstream from the Sickle Cell beta-globin gene mutation and the comparable wild-type beta-globin gene sequence, the kinetics of formation and yield of psoralen monoadducts and crosslinks with pyrimidine residues at and near the mutant base pair site and its wild-type counterpart were determined. By exploiting irradiation specificities at 300, 365 and 419 nm, it was possible to evaluate the orientation equilibrium of 3'-linked intercalated psoralen and to develop conditions that lead to preferential formation of each type of photoproduct in both the mutant and wild-type sequences. This makes possible the preparation of each type of photoproduct for use as a substrate for DNA repair.
View Article and Find Full Text PDFThree identical deoxyoligonucleotide third strands with a 3'-terminal psoralen moiety attached by linkers that differ in length (N = 16, 6 and 4 atoms) and structure were examined for their ability to form triplex-directed psoralen photoproducts with both the mutant T residue of the Sickle Cell beta-globin gene and the comparable wild-type sequence in linear duplex targets. Specificity and yield of UVA (365 nm) and visible (419 nm) light-induced photoadducts were studied. The total photoproduct yield varies with the linker and includes both monoadducts and crosslinks at various available pyrimidine sites.
View Article and Find Full Text PDFA microsatellite-containing 359-bp restriction fragment, isolated from the rat Pigr gene (murine polymeric immunoglobulin receptor gene) 3'-untranslated region (3'-UTR) and inserted into 3'-UTR or 3' flanking positions in transcription units of supercoiled plasmids, attenuates luciferase reporter gene expression in orientation- and position-dependent ways following transient transfection of human 293 cells. The same fragment stimulates orientation-dependent gene expression in a 5' flanking position. Plasmid linearization abrogates both orientation- and position-dependent responses.
View Article and Find Full Text PDFEight base analogs were tested as third strand residues in otherwise homopyrimidine strands opposite each of the 'direct' (A.T and G.C) and 'inverted' (T.
View Article and Find Full Text PDFA DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair.
View Article and Find Full Text PDF3-Nitropyrrole (M) was introduced as a non-discriminating 'universal' base in nucleic acid duplexes by virtue of small size and a presumed tendency to stack but not hydrogen bond with canonical bases. However, the absence of thermally-induced hyperchromic changes by single-stranded deoxyoligomers in which M alternates with A or C residues shows that M does not stack strongly with A or C nearest neighbors. Yet, the insertion of a centrally located M opposite any canonical base in a duplex is sometimes even less destabilizing than that of some mismatches, and the variation in duplex stability is small.
View Article and Find Full Text PDFA systematic study of agarose gel electrophoresis of double-stranded RNA in the kilobase range of sizes was performed. The dsRNA to dsDNA relative mobility was found to depend on gel concentration: in low density gels RNA moves slower and in high density gels - faster than DNA of the same molecular size. The electrophoretic differences were interpreted within the reptation theory to be mainly due to the molecular stiffness differences.
View Article and Find Full Text PDFDouble-stranded RNAs (M and L molecules) of two strains of the killer system Saccharomyces cerevisiae M437 (wild type) and ski-5 (superkiller mutant) were studied by means of electron microscopy and high resolution thermal melting. The M molecules of the ski-5 mutant were by 100 b.p.
View Article and Find Full Text PDF