In this work, we have improved the absorption properties of thin film solar cells by introducing light trapping reflectors deposited onto self-assembled nanostructures. The latter consist of a disordered array of nanopillars and are fabricated by polymer blend lithography. Their broadband light scattering properties are exploited to enhance the photocurrent density of thin film devices, here based on hydrogenated amorphous silicon active layers.
View Article and Find Full Text PDFWe investigate the T-matrix approach for the simulation of light scattering by an oblate particle near a planar interface. Its validity has been in question if the interface intersects the particle's circumscribing sphere, where the spherical wave expansion of the scattered field can diverge. However, the plane wave expansion of the scattered field converges everywhere below the particle, and in particular at the planar interface.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2016
A strategy for the efficient numerical evaluation of Sommerfeld integrals in the context of electromagnetic scattering at particles embedded in a plane parallel layer system is presented. The scheme relies on a lookup-table approach in combination with an asymptotic approximation of the Bessel function in order to enable the use of fast Fourier transformation. Accuracy of the algorithm is enhanced by means of singularity extraction and a novel technique to treat the integrand at small arguments.
View Article and Find Full Text PDFIn this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique.
View Article and Find Full Text PDF