This work demonstrated the potential of CNC as a substitute for PEG as an additive in ultrafiltration membrane fabrication. Two sets of modified membranes were fabricated using the phase inversion technique, with polyethersulfone (PES) as the base polymer and 1-N-methyl-2 pyrrolidone (NMP) as the solvent. The first set was fabricated with 0.
View Article and Find Full Text PDFCellulose nanocrystals (CNC) obtained from waste sawdust were used to modify the polyamide membrane fabricated by interfacial polymerization of m-phenylene-diamine (MPDA) and trimesoyl chloride (TMC). The efficiency of the modification with sawdust-derived CNC was investigated using zeta potential and X-ray photoelectron spectroscopy (XPS). The effect of the modification on membrane mechanical strength and stability in acidic and alkaline solutions was also investigated.
View Article and Find Full Text PDFIn this work, cellulose nanocrystals (CNC) derived from sawdust were successfully incorporated into a nanofiltration membrane produced by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC). The characteristics of unmodified and CNC-modified membranes were investigated using scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), zeta potential measurement, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. The performance of the membranes in terms of nitrate removal and water flux was investigated using 60 mg/L of potassium nitrate solution in a dead-end test cell.
View Article and Find Full Text PDFThe continuous increase in the wastes generated from forestry, timber, and paper industries has engendered the need for their transformation into economically viable materials for the benefit of mankind. This study reports the preparation and application of sawdust-derived cellulose nanocrystals (CNC) incorporated with zinc oxide as a novel adsorbent for the removal of methylene blue (MB) from water. The CNC/ZnO nanocomposite was characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy.
View Article and Find Full Text PDF