The renewable energy industry requires accurate forecasts of intermittent solar irradiance (SI) to effectively manage solar power generation and supply. Introducing the random forests (RFs) model and its hybridisation with quantile regression modelling, the quantile regression random forest (QRRF), can help improve the forecasts' accuracy. This paper assesses the RFs and QRRF models against the quantile generalised additive model (QGAM) by evaluating their forecast performances.
View Article and Find Full Text PDF