Unsuccessful axonal regeneration in transected spinal cord injury (SCI) is mainly attributed to shortage of growth factors, inhibitory glial scar, and low intrinsic regenerating capacity of severely injured neurons. Previously, we constructed an axonal growth permissive pathway in a thoracic hemisected injury by transplantation of Schwann cells overexpressing glial-cell-derived neurotrophic factor (SCs-GDNF) into the lesion gap as well as the caudal cord and proved that this novel permissive bridge promoted the regeneration of descending propriospinal tract (dPST) axons across and beyond the lesion. In the current study, we subjected rats to complete thoracic (T11) spinal cord transections and examined whether these combinatorial treatments can support dPST axons' regeneration beyond the transected injury.
View Article and Find Full Text PDFSensory feedback is critical for effectively controlling brain-machine interfaces and neuroprosthetic devices. Spinal cord stimulation (SCS) is proposed as a technique to induce artificial sensory perceptions in rodents, monkeys, and humans. However, to realize the full potential of SCS as a sensory neuroprosthetic technology, a better understanding of the effect of SCS pulse train parameter changes on sensory detection and discrimination thresholds is necessary.
View Article and Find Full Text PDFBackground: Adductor laryngeal dystonia (ADLD) is a substantially debilitating focal progressive neurological voice disorder. Current standard of care is symptomatic treatment with repeated injections of botulinum toxin into specific intrinsic laryngeal muscles with extremely variable and temporary benefits. We report the use of bilateral deep brain stimulation (DBS) of globus pallidus (GPi) for long-term improvement of ADLD voice symptoms.
View Article and Find Full Text PDFFor patients who have lost sensory function due to a neurological injury such as spinal cord injury (SCI), stroke, or amputation, spinal cord stimulation (SCS) may provide a mechanism for restoring somatic sensations via an intuitive, non-visual pathway. Inspired by this vision, here we trained rhesus monkeys and rats to detect and discriminate patterns of epidural SCS. Thereafter, we constructed psychometric curves describing the relationship between different SCS parameters and the animal's ability to detect SCS and/or changes in its characteristics.
View Article and Find Full Text PDFIntroduction: Freezing of gait (FoG) is one of the most disabling yet poorly understood symptoms of Parkinson's disease (PD). FoG is an episodic gait pattern characterized by the inability to step that occurs on initiation or turning while walking, particularly with perception of tight surroundings. This phenomenon impairs balance, increases falls, and reduces the quality of life.
View Article and Find Full Text PDFIntroduction: Epidural electrical stimulation of the conus medullaris has helped facilitate native motor recovery in individuals with complete cervicothoracic spinal cord injuries (SCI). A theorized mechanism of clinical improvement includes supporting central pattern generators intrinsic to the conus medullaris. Because spinal cord stimulators (SCS) are approved for the treatment of neuropathic pain, we were able to test this experimental therapy in a subject with complete L1 paraplegia and neuropathic genital pain due to a traumatic conus injury.
View Article and Find Full Text PDFStudy Design: Systematic review and meta-analysis.
Objective: To perform a systematic review of clinical outcomes between stand-alone anchored spacers and traditional cages with plate fixation for dysphagia and pseudoarthrosis using data from clinical trials.
Methods: Our search protocol was added to PROSPERO register and systematic review using PRISMA method was performed.
Lack of sensory feedback is a major obstacle in the rapid absorption of prosthetic devices by the brain. While electrical stimulation of cortical and subcortical structures provides unique means to deliver sensory information to higher brain structures, these approaches require highly invasive surgery and are dependent on accurate targeting of brain structures. Here, we propose a semi-invasive method, Dorsal Column Stimulation (DCS) as a tool for transferring sensory information to the brain.
View Article and Find Full Text PDFSpinal cord stimulation has been used for the treatment of chronic pain for decades. In 2009, our laboratory proposed, based on studies in rodents, that electrical stimulation of the dorsal columns of the spinal cord could become an effective treatment for motor symptoms associated with Parkinson's disease (PD). Since our initial report in rodents and a more recent study in primates, several clinical studies have now described beneficial effects of dorsal column stimulation in parkinsonian patients.
View Article and Find Full Text PDFJ Basic Clin Physiol Pharmacol
November 2016
Background: Diabetic neuropathy is the most common complication of diabetes mellitus, and the different drug combinations available do not provide effective pain relief. The present study was performed to observe the effect of amitripyline, duloxetine, sitagliptin, and pregabalin, and their combinations on streptozotocin (STZ)-induced diabetic neuropathy.
Methods: Diabetic neuropathy was induced by STZ, and the tail-flick test was used to assess thermal hyperalgesia before and after (at 30, 60, and 120 min) drug administration.
Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brain-machine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures.
View Article and Find Full Text PDFRecently, we proposed that Brainets, i.e. networks formed by multiple animal brains, cooperating and exchanging information in real time through direct brain-to-brain interfaces, could provide the core of a new type of computing device: an organic computer.
View Article and Find Full Text PDFAlthough L-dopa continues to be the gold standard for treating motor symptoms of Parkinson's disease (PD), it presents long-term complications. Deep brain stimulation is effective, but only a small percentage of idiopathic PD patients are eligible. Based on results in animal models and a handful of patients, dorsal column stimulation (DCS) has been proposed as a potential therapy for PD.
View Article and Find Full Text PDF