Publications by authors named "Amol Padgaonkar"

Triple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients.

View Article and Find Full Text PDF

Overexpression and constitutive activation of CYCLIN D1 and Casein Kinase 2 are common features of many hematologic malignancies, including mantle cell lymphoma (MCL) and leukemias such as T-cell acute lymphoblastic leukemia (T-ALL). Although both CK2 and CDK4 inhibitors have shown promising results against these tumor types, none of these agents have achieved objective responses in the clinic as monotherapies. Because both proteins play key roles in these and other hematological malignancies, we have analyzed the therapeutic potential of ON108110, a novel dual specificity ATP-competitive inhibitor of protein kinase CK2 as well as CDK4/6 in MCL and T-ALL.

View Article and Find Full Text PDF

The success of imatinib, a BCR-ABL inhibitor for the treatment of chronic myelogenous leukemia, has created a great impetus for the development of additional kinase inhibitors as therapeutic agents. However, the complexity of cancer has led to recent interest in polypharmacological approaches for developing multikinase inhibitors with low toxicity profiles. With this goal in mind, we analyzed more than 150 novel cyano pyridopyrimidine compounds and identified structure-activity relationship trends that can be exploited in the design of potent kinase inhibitors.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1α (HIF-1α) and signal transducer and activator of transcription 3 (STAT3) are transcription factors and are activated in response to hypoxia. Both HIF-1α and STAT3 regulate various aspects of cancer biology such as cell survival, proliferation, angiogenesis etc. and are constitutively expressed in a wide range of human cancers.

View Article and Find Full Text PDF

A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-amino-4-methoxyphenyl)-2-(2',4',6'-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size, indicating their in vivo potential as anticancer agents.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor-1 (HIF-1) is a master regulator of the transcriptional response to hypoxia. It is essential for angiogenesis and is associated with tumor progression and overexpression of HIF-1α has been demonstrated in many common human cancers. Therefore, HIF-1α is one of the most compelling anticancer targets.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1α (HIF-1α) is a critical regulatory protein of cellular response to hypoxia, and regulates the transcription of many genes involved in key aspects of cancer biology, including immortalization, maintenance of stem cell pools, cellular dedifferentiation, vascularization, and invasion/metastasis. HIF-1α has been implicated in the regulation of genes involved in angiogenesis, for example, VEGF and is associated with tumor progression. In the last decade, over expression of HIF-1α has been demonstrated in many common human cancers and emerging as a validated target for anticancer drug discovery.

View Article and Find Full Text PDF

We have previously shown that SV40 small t antigen (st) cooperates with deregulated cyclin E to activate CDK2 and bypass quiescence in normal human fibroblasts (NHF). Here we show that st expression in serum-starved and density-arrested NHF specifically induces up-regulation and loading of CDC6 onto chromatin. Coexpression of cyclin E results in further accumulation of CDC6 onto chromatin concomitantly with phosphorylation of CDK2 on Thr-160 and CDC6 on Ser-54.

View Article and Find Full Text PDF

We herein report the design and synthesis of furoquinoline based novel molecules (16-36) and their in vitro multiple targeted inhibitory potency against PI3K/Akt phosphorylation and mTOR using cell based and cell-free kinase assay. In particular, compound 23 in addition to PI3K-mTOR inhibitory potency, it has shown potent inhibition of hypoxia-induced accumulation of HIF-1alpha protein in U251-HRE cell line. The inhibitory activities of compound 23 were confirmed by Western blot analysis, using human non-small cell lung carcinoma H-460 cell line and glioblastoma U251 cell lines.

View Article and Find Full Text PDF