Publications by authors named "Amod Timalsina"

Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection.

View Article and Find Full Text PDF

The synthesis, characterization, and optical properties of a novel star-shaped oligothiophene with a central rigid trithienobenzene (BTT) core and diketopyrrolopyrrole (DPP) units are reported and compared with homologous linear systems based on the benzodithiophene (BDT) and the naphthodithiophene (NDT) units end capped with DPPs. This comparison is aimed at elucidating the effect of the star-shaped configuration versus linear conformation on the optical and electrical properties. Electronic and vibrational spectroscopies, together with transient absorption spectroscopy, scanning electronic microscopy, and DFT calculations are used to understand not only the molecular properties of these semiconductors, but also to analyze the supramolecular aggregation in these derivatives.

View Article and Find Full Text PDF

A new series of metal-free organic chromophores (TPA-TTAR-A (1), TPA-T-TTAR-A (2), TPA-TTAR-T-A (3), and TPA-T-TTAR-T-A (4)) are synthesized for application in dye-sensitized solar cells (DSSC) based on a donor-π-bridge-acceptor (D-π-A) design. Here a simple triphenylamine (TPA) moiety serves as the electron donor, a cyanoacrylic acid as the electron acceptor and anchoring group, and a novel tetrathienoacene (TTA) as the π-bridge unit. Because of the extensively conjugated TTA π-bridge, these dyes exhibit high extinction coefficients (4.

View Article and Find Full Text PDF

Perylenediimide (PDI)-based acceptors offer a potential replacement for fullerenes in bulk-heterojunction (BHJ) organic photovoltaic cells (OPVs). The most promising efforts have focused on creating twisted PDI dimers to disrupt aggregation and thereby suppress excimer formation. Here, we present an alternative strategy for developing high-performance OPVs based on PDI acceptors that promote slip-stacking in the solid state, thus preventing the coupling necessary for rapid excimer formation.

View Article and Find Full Text PDF

The influence of solubilizing substituents on the photovoltaic performance and thin-film blend morphology of new benzo[1,2-b:6,5-b']dithiophene (bBDT) based small molecule donor semiconductors is investigated. Solar cells based on bBDT(TDPP)2-PC71BM with two different types of side chains exhibit high power conversion efficiencies, up to 5.53%.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers enhanced the performance of anode materials in bulk-heterojunction organic photovoltaic cells by modifying glass/ITO anodes with silane-tethered bis(fluoroaryl)amines to create self-assembled interfacial layers.
  • Characterization techniques revealed that these modified anodes formed hydrophobic amorphous monolayers with thicknesses between 6.68 to 9.76 Å and altered work functions ranging from 4.66 to 5.27 eV.
  • Performance tests showed that these modified anodes significantly improved the efficiency of organic photovoltaic devices, highlighting a strong correlation between the rates of electron transport and the overall power conversion efficiency.
View Article and Find Full Text PDF