Materials (Basel)
March 2023
Additive manufacturing (AM) technologies have gained considerable attention in recent years as an innovative method to produce high entropy alloy (HEA) components. The unique and excellent mechanical and environmental properties of HEAs can be used in various demanding applications, such as the aerospace and automotive industries. This review paper aims to inspect the status and prospects of research and development related to the production of HEAs by AM technologies.
View Article and Find Full Text PDFA direct energy deposition (DED) process using wires is considered an additive manufacturing technology that can produce large components at an affordable cost. However, the high deposition rate of the DED process is usually accompanied by poor surface quality and inherent printing defects. These imperfections can have a detrimental effect on fatigue endurance and corrosion fatigue resistance.
View Article and Find Full Text PDFThe growing interest in refractory high-entropy alloys (HEAs) in the last decade is mainly due to their thermal stability, outstanding mechanical properties, and excellent corrosion resistance. However, currently HEAs are still not considered for use as common structural materials due to their inherent drawbacks in terms of processing and machining operations. The recent progress witnessed in additive manufacturing (AM) technologies has raised the option of producing complex components made of HEAs with minimal machining processes.
View Article and Find Full Text PDFWe have developed a novel bioactive hybrid metallic implant that integrates the beneficial characteristics of a permanent matrix and a biodegradable substance. Such a combination may generate a material system that evolves into a porous structure within weeks to months following implantation and can be used to form strong interfacial bonding and osseointegration for orthopedic and dental applications. Presently, traditional technologies such as casting, powder metallurgy and plastic forming have limited ability to produce the complex bioactive implant structures that are required in practical applications.
View Article and Find Full Text PDFThe term "osseointegrated implants" mainly relates to structural systems that contain open spaces, which enable osteoblasts and connecting tissue to migrate during natural bone growth. Consequently, the coherency and bonding strength between the implant and natural bone can be significantly increased, for example in operations related to dental and orthopedic applications. The present study aims to evaluate the prospects of a Ti-6Al-4V lattice, produced by selective laser melting (SLM) and infiltrated with biodegradable Zn2%Fe alloy, as an OI-TiZn system implant in in vitro conditions.
View Article and Find Full Text PDFThe present study aims to evaluate the stress corrosion behavior of additively manufactured austenitic stainless steel produced by the wire arc additive manufacturing (WAAM) process. This was examined in comparison with its counterpart, wrought alloy, by electrochemical analysis in terms of potentiodynamic polarization and impedance spectroscopy and by slow strain rate testing (SSRT) in a corrosive environment. The microstructure assessment was performed using optical and scanning electron microscopy along with X-ray diffraction analysis.
View Article and Find Full Text PDF