Publications by authors named "Amna Komal Khan"

Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability.

View Article and Find Full Text PDF

The trend of using plant extracts for the synthesis of nanoparticles has increased in recent years due to environmental safety, low cost, simplicity and sustainability of the green route. Moreover, the morphology of NPs can be fine-tuned by applying abiotic factors such as LEDs, which enhance the bio-reduction of the precursor salt and excite phytochemicals during their green synthesis. Considering this, in present study, the green synthesis of AgNPs was carried out using leaf extract under the illumination of red, green, blue, yellow and white LEDs.

View Article and Find Full Text PDF

The green synthesis of nanoparticles has emerged as a simple, safe, sustainable, reliable and eco-friendly protocol. Among different types of NPs, green-synthesized zinc oxide NPs (ZnONPs) show various promising biological uses due to their interesting magnetic, electrical, optical and chemical characteristics. Keeping in view the dependence of the therapeutic efficacy of NPs on their physico-chemical characteristics, the green synthesis of ZnONPs using leaf extract under UV-A and UV-C light was carried out in this study.

View Article and Find Full Text PDF

A nano-revolution based on the green synthesis of nanomaterials could affect all areas of human life, and nanotechnology represents a propitious platform for various biomedical applications. During the synthesis of nanoparticles, various factors can control their physiognomies and clinical activities. Light is one of the major physical factors that can play an important role in tuning/refining the properties of nanoparticles.

View Article and Find Full Text PDF

With the increase in biotechnological, environmental, and nutraceutical importance of algae, about 100 whole genomic sequences of algae have been published, and this figure is expected to double in the coming years. The phenotypic and ecological diversity among algae hints at the range of functional capabilities encoded by algal genomes. In order to explore the biodiversity of algae and fully exploit their commercial potential, understanding their evolutionary, structural, functional, and developmental aspects at genomic level is a pre-requisite.

View Article and Find Full Text PDF

Algae have long been exploited commercially and industrially as food, feed, additives, cosmetics, pharmaceuticals, and fertilizer, but now the trend is shifting towards the algae-mediated green synthesis of nanoparticles (NPs). This trend is increasing day by day, as algae are a rich source of secondary metabolites, easy to cultivate, have fast growth, and are scalable. In recent era, green synthesis of NPs has gained widespread attention as a safe, simple, sustainable, cost-effective, and eco-friendly protocol.

View Article and Find Full Text PDF