Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C.
View Article and Find Full Text PDFLevitation offers extreme isolation of mechanical systems from their environment, while enabling unconstrained high-precision translation and rotation of objects. Diamagnetic levitation is one of the most attractive levitation schemes because it allows stable levitation at room temperature without the need for a continuous power supply. However, dissipation by eddy currents in conventional diamagnetic materials significantly limits the application potential of diamagnetically levitating systems.
View Article and Find Full Text PDFChemotactic signals are relayed to neighboring cells through the secretion of additional chemoattractants. We previously showed in that the adenylyl cyclase A, which synthesizes the chemoattractant cyclic adenosine monophosphate (cAMP), is present in the intraluminal vesicles of multivesicular bodies (MVBs) that coalesce at the back of cells. Using ultrastructural reconstructions, we now show that ACA-containing MVBs release their contents to attract neighboring cells.
View Article and Find Full Text PDFThere is a large variety of nanomaterials each with unique electronic, optical and sensing properties. However, there is currently no paradigm for integration of different nanomaterials on a single chip in a low-cost high-throughput manner. We present a high throughput integration approach based on spatially controlled dielectrophoresis executed sequentially for each nanomaterial type to realize a scalable array of individually addressable assemblies of graphene, carbon nanotubes, metal oxide nanowires and conductive polymers on a single chip.
View Article and Find Full Text PDFChemiresistors made of thin films of single-walled carbon nanotube (CNT) bundles on cellulosics (paper and cloth) can detect aggressive oxidizing vapors such as nitrogen dioxide and chlorine at 250 and 500 ppb, respectively, at room temperature in ambient air without the aid of a vapor concentrator. Inkjet-printed films of CNTs on 100% acid-free paper are significantly more robust than dip-coated films on plastic substrates. Performance attributes include low sensor-to-sensor variation, spontaneous signal recovery, negligible baseline drift, and the ability to bend the sensors to a crease without loss of sensor performance.
View Article and Find Full Text PDFNanofibers of polyaniline and oligoanilines of controlled molecular weight, e.g., tetraaniline, octaaniline, and hexadecaaniline, are synthesized using a versatile high ionic strength aqueous system that permits the use of H(2)O(2) with no added catalysts as a mild oxidizing agent.
View Article and Find Full Text PDFPhys Rev Lett
August 2005
Synchrotron x-ray diffraction is used to compare the misfit strain and composition in a self-organized nanowire array in an InAs/GaSb superlattice with InSb interfacial bonds to a planar InAs/GaSb superlattice with GaAs interfacial bonds. It is found that the morphological instability that occurs in the nanowire array results from the large misfit strain that the InSb interfacial bonds have in the nanowire array. Based on this result, we propose that tailoring the type of interfacial bonds during the epitaxial growth of III-V semiconductor films provides a novel approach for producing the technologically important morphological instability in anomalously thin layers.
View Article and Find Full Text PDF