Gravity perception and gravitropic response are essential for plant development. In herbaceous species it is widely accepted that one of the primary events in gravity perception involves the displacement of amyloplasts within specialized cells. However the signaling cascade leading to stem reorientation is not fully known especially in woody species in which primary and secondary growth occur.
View Article and Find Full Text PDFThe response of the heat-sensitive dgd1-2 and dgd1-3 Arabidopsis mutants depleted in the galactolipid DGDG to photoinhibition of chloroplasts photosystem II was studied to verify if there is a relationship between heat stress vulnerability due to depletion in DGDG and the susceptibility to photoinhibitory damage. Non-photochemical quenching (NPQ) is known to dissipate excessive absorbed light energy as heat to protect plants against photodamage. The main component of NPQ is dependent of the transthylakoid pH gradient and is modulated by zeaxanthin (Zx) synthesis.
View Article and Find Full Text PDFPlants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint.
View Article and Find Full Text PDFHeat tolerance of Arabidopsis thaliana (WT) and its mutants, crr2-2, lacking NADPH-dehydrogenase (Ndh-pathway), and pgr5, deficient in proton gradient regulation and/or ferredoxin-quinone-reductase (FQR-pathway), was studied from 30 to 46°C. Chlorophyll fluorescence revealed that thermal damage to photosystem II (PSII) was maximal in WT plants following short-term exposure of leaves to moderate or high temperature stress. Thermal stress impaired the photosynthetic electron flow at oxidizing and reducing sides of PSII.
View Article and Find Full Text PDFThe activation of the phenylpropanoid pathway in plants by environmental stimuli is one of the most universal biochemical stress responses known. In tomato plant, rubbing applied to a young internode inhibit elongation of the rubbed internode and his neighboring one. These morphological changes were correlated with an increase in lignification enzyme activities, phenylalanine ammonia-lyase (PAL), cinnamyl alcohol dehydrogenase (CAD) and peroxidases (POD), 24 hours after rubbing of the forth internode.
View Article and Find Full Text PDFGravity is a constant force guiding the direction of plant growth. In young poplar stem, reorientation of the apical region is mainly obtained by differential growth of elongating primary tissues. At the base, where elongation is achieved but where the cambium is active, reorientation is due to asymmetrical formation of reaction wood.
View Article and Find Full Text PDFThe aim of this study is determine the effect of different temperature regimes on germination of wheat seeds and early germination events. Germination is very sensitive to environment conditions, particularly the temperature. Physiological and biochemical responses of wheat seed germination during time at various temperatures (5, 15, 25, 35 and 45 degrees C) have shown that optimal temperature (25 degrees C) favorites a good aptitude to germinate, whereas low (5 degrees C) and high temperature (45 degrees C) were extend the delay of germination.
View Article and Find Full Text PDFAdventitious rooting in microcuttings of Malus rootstocks MM106 was studied as regards their histological and biochemical aspects. Microcuttings from shoots raised in Murashige and Skoog's (1962) medium were transferred into a rooting medium containing IBA in the dark, then fixed 0, 3, 5, 7 and 10 days after. Some cambial zone and adjacent phloem cells became dense cytoplasm, nuclei with prominent nucleoli and the first cell divisions were observed at day 3.
View Article and Find Full Text PDFA cDNA encoding an iron-superoxide dismutase (Fe-SOD) was isolated by RACE-PCR from a Lycopersicon esculentum cDNA library. The Fe-SOD cDNA consists of a 746-bp open reading frame and is predicted to encode a protein of 249 amino acids with a calculated molecular mass of 27.9 kDa.
View Article and Find Full Text PDF