Front Ophthalmol (Lausanne)
November 2023
The Warburg effect, which was first described a century ago, asserts that mitotic tumor cells generate higher quantities of lactate. Intriguingly, even in typical physiological circumstances, postmitotic retinal photoreceptor cells also produce elevated levels of lactate. Initially classified as metabolic waste, lactate has since gained recognition as a significant intracellular signaling mediator and extracellular ligand.
View Article and Find Full Text PDFPrior studies have emphasized a bioenergetic crisis in the retinal pigment epithelium (RPE) as a critical factor in the development of age-related macular degeneration (AMD). The isoforms Fructose-1,6-bisphosphate aldolase C (ALDOC) and pyruvate kinase M2 (PKM2) have been proposed to play a role in AMD pathogenesis. While PKM2 and ALDOC are crucial for aerobic glycolysis in the neural retina, they are not as essential for the RPE.
View Article and Find Full Text PDFInsulin-like growth factor-1 (IGF-1) plays a diverse role in the retina, exerting its effects in both normal and diseased conditions. Deficiency of IGF-1 in humans leads to issues such as microcephaly, mental retardation, deafness, and postnatal growth failure. IGF-1 is produced in the retinal pigment epithelium (RPE) and activates the IGF-1 receptor (IGF-1R) in photoreceptor cells.
View Article and Find Full Text PDFPhosphoinositides (PIPs) are a family of minor acidic phospholipids in the cell membrane. Phosphoinositide (PI) kinases and phosphatases can rapidly convert one PIP product into another resulting in the generation of seven distinct PIPs. The retina is a heterogeneous tissue composed of several cell types.
View Article and Find Full Text PDFInsulin-like growth factor I (IGF-1) is a neurotrophic factor and is the ligand for insulin-like growth factor 1 receptor (IGF-1R). Reduced expression of IGF-1 has been reported to cause deafness, mental retardation, postnatal growth failure, and microcephaly. IGF-1R is expressed in the retina and photoreceptor neurons; however, its functional role is not known.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
August 2022
Protein tyrosine kinases and protein phosphatases play a critical role in cellular regulation. The length of a cellular response depends on the interplay between activating protein kinases and deactivating protein phosphatases. Protein tyrosine phosphatase 1B (PTP1B) and growth factor receptor-bound protein 14 (Grb14) are negative regulators of receptor tyrosine kinases.
View Article and Find Full Text PDFThe major pathway for the production of the low-abundance membrane lipid phosphatidylinositol 3-phosphate (PI(3)P) synthesis is catalyzed by class III phosphoinositide 3-kinase (PI3K) Vps34. The absence of Vps34 was previously found to disrupt autophagy and other membrane-trafficking pathways in some sensory neurons, but the roles of phosphatidylinositol 3-phosphate and Vps34 in cone photoreceptor cells have not previously been explored. We found that the deletion of Vps34 in neighboring rods in mouse retina did not disrupt cone function up to 8 weeks after birth, despite diminished rod function.
View Article and Find Full Text PDFInositol phospholipids play an important role in cell physiology. The inositol head groups are reversibly phosphorylated to produce seven distinct phosphorylated inositides, commonly referred to as phosphoinositides (PIs). These seven PIs are dynamically interconverted from one PI to another by the action of PI kinases and PI phosphatases.
View Article and Find Full Text PDFThe main therapeutic goal for diabetic retinopathy (DR) is to prevent vision loss in patients with diabetes mellitus. Identifying the visual complications at a preclinical juncture will offer an early therapeutic window for diagnosis and intervention. Very recently, we found that pyruvate kinase M2 isoform (PKM2) regulates visual function through regulation of a key enzyme, phosphodiesterase 6β (Pde6β), involved in modulating photoreceptor functions.
View Article and Find Full Text PDFWe previously reported a ligand-independent and rhodopsin-dependent insulin receptor (IR) neuroprotective signaling pathway in both rod and cone photoreceptor cells, which is activated through protein-protein interaction. Our previous studies were performed with either retina or isolated rod or cone outer segment preparations and the expression of IR signaling proteins were examined. The isolation of outer segments with large portions of the attached inner segments is a technical challenge.
View Article and Find Full Text PDFThe tumor form of pyruvate kinase M2 has been suggested to promote cellular anabolism by redirecting the metabolism to cause accumulation of glycolytic intermediates and increasing flux through the pentose phosphate pathway, which is a metabolic pathway parallel to glycolysis. Both rod and cone photoreceptors express the tumor form of pyruvate kinase M2. Recent studies from our laboratory show that PKM2 is functionally important for rod photoreceptor structure, function, and viability.
View Article and Find Full Text PDFSerine/threonine kinase Akt is a downstream effector of the phosphoinositide 3-kinase pathway that is involved in many processes, including providing neuroprotection to stressed photoreceptor cells. Akt exists in three isoforms designated as Akt1, Akt2, and Akt3. All of these isoforms are expressed in the retina.
View Article and Find Full Text PDFStudies form our laboratory and others show that the oncogenic tyrosine kinase and serine threonine kinase signaling pathways are essential for cone photoreceptor survival. These pathways are downregulated in mouse models of retinal degenerative diseases. In the present study, we found that activation mutants of mTOR delayed the death of cones in a mouse model of retinal degeneration.
View Article and Find Full Text PDFOver the last few years, huge progress has been made in the understanding of molecular mechanisms underlying the pathogenesis of retinal degenerative diseases. Such knowledge has led to the development of gene therapy approaches to treat these devastating disorders. Non-viral gene delivery has been recognized as a prospective treatment for retinal degenerative diseases.
View Article and Find Full Text PDFPyruvate kinase M2 (PKM2) is a glycolytic enzyme that is expressed in cancer cells. Its role in tumor metabolism is not definitively established, but investigators have suggested that regulation of PKM2 activity can cause accumulation of glycolytic intermediates and increase flux through the pentose phosphate pathway. Recent evidence suggests that PKM2 also may have non-metabolic functions, including as a transcriptional co-activator in gene regulation.
View Article and Find Full Text PDFProtein phosphatases are a group of universal enzymes that are responsible for the dephosphorylation of various proteins and enzymes in cells. Cellular signal transduction events are largely governed by the phosphorylation of key proteins. The length of cellular response depends on the activation of protein phosphatase that dephosphorylates the phosphate groups to halt a biological response, and fine-tune the defined cellular outcome.
View Article and Find Full Text PDFThe tumor form of pyruvate kinase M2 (PKM2) undergoes tyrosine phosphorylation and gives rise to the Warburg effect. The Warburg effect defines a pro-oncogenic metabolism switch such that cancer cells take up more glucose than normal tissue and favor incomplete oxidation of glucose, even in the presence of oxygen. Retinal photoreceptors are highly metabolic and their energy consumption is equivalent to that of a multiplying tumor cell.
View Article and Find Full Text PDFNon-viral vectors, such as lipid-based nanoparticles (liposome-protamine-DNA complex [LPD]), could be used to deliver a functional gene to the retina to correct visual function and treat blindness. However, one of the limitations of LPD is the lack of cell specificity, as the retina is composed of seven types of cells. If the same gene is expressed in multiple cell types or is absent from one desired cell type, LPD-mediated gene delivery to every cell may have off-target effects.
View Article and Find Full Text PDFIn humans, daylight vision is primarily mediated by cone photoreceptors. These cells die in age-related retinal degenerations. Prolonging the life of cones for even one decade would have an enormous beneficial effect on usable vision in an aging population.
View Article and Find Full Text PDFLipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures.
View Article and Find Full Text PDFPhosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylates the 3'OH of the inositol ring of phosphoinositides (PIs). They are responsible for coordinating a diverse range of cellular functions. Class IA PI3K is a heterodimeric protein composed of a regulatory p85 and a catalytic p110 subunit.
View Article and Find Full Text PDFBackground: Phosphatidylinositol 3-Kinases (PI3Ks) are a family of lipid kinases that phosphorylate the D3-hydroxyls of the inositol ring of phosphoinositides, and are responsible for coordinating a diverse range of cellular functions. A canonical pathway of activation of PI3Ks through the interaction of RA-domain with Ras proteins has been well established. In retinal photoreceptors, we have identified a non-canonical pathway of PI3Kγ activation through the interaction of its RA-domain with a putative Ras-like domain (RLD) in alpha subunit of cyclic nucleotide-gated channel (CNGA1) in retinal rod photoreceptors.
View Article and Find Full Text PDF