Publications by authors named "Amjed Javid"

Textile-based photocatalysts are the new materials that can be utilized as an effective sustainable solution for biochemical hazards. Hence, we aimed to develop a sustainable, cost-effective, and facile approach for the fabrication of photocatalytic fabric using graphitic carbon nitride (g-CN) and ferric-based multifunctional nanocomposite. Bulk g-CN was prepared from urea by heating it at 500 °C for 2 h.

View Article and Find Full Text PDF

Frequent washing of textiles poses a serious hazard to the ecosystem, owing to the discharge of harmful effluents and the release of microfibers. On one side, the harmful effluents from detergents are endangering marine biota, while on the other end, microplastics are observed even in breastfeeding milk. This work proposes the development of sunlight-driven cleaning and antibacterial comfort fabrics by immobilizing functionalized Zn-doped TiO nanoparticles.

View Article and Find Full Text PDF

Synthesis and modification of nanoparticles to make them suitable to functionalise a substrate for various application fields involves many steps, which are complex, time-consuming, and sometimes require special equipment. This is a major drawback to meet rapid technological requirements. In this work, a procedure has been developed to modify TiO nanoparticles by the sol-gel method at their synthesis stage using titanium tetraisopropoxide and modifying agents including ODS and GPTMS.

View Article and Find Full Text PDF

Surface energy (SE) is the most sensitive and fundamental parameter for governing the interfacial interactions in nanoscale carbon materials. However, on account of the complexities involved of hybridization states and surface bonds, achieved SE values are often less in comparison with their theoretical counterparts and strongly influenced by stability aspects. Here, an advanced facing-target pulsed dc unbalanced magnetron-sputtering process is presented for the synthesis of undoped and H/N-doped nanocrystalline carbon thin films.

View Article and Find Full Text PDF

The interdependence of 'size' and 'volume-fraction' hinders the identification of their individual role in the interface properties of metal nanoparticles (NPs) embedded in a matrix. Here, the case of Cu NPs embedded in a C matrix is presented for their profound antibacterial activity. Cu:C nanocomposite thin films with fixed Cu content (≈12 atomic%) are prepared using a plasma process where plasma energy controls the size of Cu NPs (from 9 nm to 16 nm).

View Article and Find Full Text PDF

In the present study, a biosurfactant was synthesized by using a bacterial strain of Pseudomonas aeruginosa in minimal media provided with n-heptadecane as sole carbon source under shake-flask conditions. The biosurfactant was isolated (by acid precipitation, solvent extraction, and rotary evaporation), purified (by column chromatography and TLC), identified (by FAB-MS, FTIR, and 1D-(1)H NMR), and chemo-physical characterized (by tensiometry). Two principal rhamnolipid congeners were identified as dirhamnolipid RRC10C10 and monorhamnolipid RC10C10 with a CMC of 50mg/L.

View Article and Find Full Text PDF

The present study dealt with emulsive fabrication of chitosan microcapsules encapsulating essential oils in the present of bio/surfactant. The size distribution, morphology and stability of microcapsules were examined by using advanced surface characterisation techniques. At cetyl trimethyl ammonium bromide (CTAB) concentration of 330 mg/L, the smallest average size of microcapsules was observed as12.

View Article and Find Full Text PDF