Publications by authors named "Amjad Khalil"

Liver disease is increasing in incidence and is the third most common cause of premature death in the United Kingdom and fourth in the United States. Liver disease accounts for 2 million deaths globally each year. Three-quarters of patients with liver disease are diagnosed at a late stage, with liver transplantation as the only definitive treatment.

View Article and Find Full Text PDF

Biometrics is the measurement of an individual's distinctive physical and behavioral characteristics. In comparison to traditional token-based or knowledge-based forms of identification, biometrics such as fingerprints, are more reliable. Fingerprint images recorded digitally can be affected by scanner noise, incorrect finger pressure, condition of the finger's skin (wet, dry, or abraded), or physical material it is scanned from.

View Article and Find Full Text PDF

The sand production during oil and gas extraction poses a severe challenge to the oil and gas companies as it causes erosion of pipelines and valves, damages the pumps, and ultimately decreases production. There are several solutions implemented to contain sand production including chemical and mechanical means. In recent times, extensive work has been done in geotechnical engineering on the application of enzyme-induced calcite precipitation (EICP) techniques for consolidating and increasing the shear strength of sandy soil.

View Article and Find Full Text PDF

Sulphate-reducing bacteria wreaks havoc to oil pipelines, as it is an active agent for scale formation in the oil production tubing, and plugging of reservoir rock around the oil wells, and this leads to the degradation of oil quality. In this work, we synthesized copper oxide/titanium dioxide nanocomposite photocatalysts with three different mass contents of copper oxide (10%, 20% and 30%) and used them as an effective photo-catalyst in the process of photo-catalytic deactivation of sulphate-reducing bacteria. The anchoring of copper oxide on titanium dioxide brought about the following positive attributes in copper oxide/titanium dioxide nanocomposite pertained to the photo-catalyst: (i) the material transformed to visible light active with the potential to harness the more efficient visible spectral region of the solar radiation, (ii) increased surface area on the photo-catalyst enhanced the number of active reaction sites in the material, and (iii) efficiently retarded the undesired photo-generated electron hole recombination to promote the photo-catalytic activity.

View Article and Find Full Text PDF

The initially developed vaccines were relying mostly on attenuation and inactivation of pathogens. The use of recombinant DNA technology allows the targeting of immune responses focused against a few protective antigens. The conventional recombination methods for generating vaccines are time-consuming, laborious, and less efficient.

View Article and Find Full Text PDF

During the fracture stimulation of oil and gas wells, fracturing fluids are used to create fractures and transport the proppant into the fractured reservoirs. The fracturing fluid viscosity is responsible for proppant suspension, the viscosity can be increased through the incorporation of guar polymer and cross-linkers. After the fracturing operation, the fluid viscosity is decreased by breakers for efficient oil and gas recovery.

View Article and Find Full Text PDF

Face masks are primary line of defense to reduce the transmission risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). World Health Organization (WHO) has already updated the guidelines and advised the use of face masks in public areas essentially. This has dramatically increased the production and use of face masks in many parts of the world.

View Article and Find Full Text PDF

From ecological and industrial perspectives, Anoxybacillus flavithermus species that lives in a thermophilic environment, are extremely important bacteria due to their potential in producing highly interesting compounds and enzymes. In order to understand the genetic makeup of these thermophiles, we have performed a comparative genomics study of 12 genome-sequenced strains of Anoxybacillus flavithermus bacteria. The genome size of Anoxybacillus flavithermus strains is from 2.

View Article and Find Full Text PDF

Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles.

View Article and Find Full Text PDF

AK1 is a thermophile which grows between the temperatures of 45°C and 70°C. The present study is an extended genome report of AK1 along with the morphological characterization. The strain is isolated from a hot spring in Saudi Arabia (southeast of the city Gazan).

View Article and Find Full Text PDF

Anoxybacillus flavithermus strain AK1 was isolated from Al-Ain Alhara, a thermal hot spring located 50 km southeast of the city of Gazan, Saudi Arabia (16°56'N, 43°15'E). The sequenced and annotated genome is 2,630,664 bp and encodes 2,799 genes.

View Article and Find Full Text PDF

Water disinfection has attracted the attention of scientists worldwide due to water scarcity. The most significant challenges are determining how to achieve proper disinfection without producing harmful byproducts obtained usually using conventional chemical disinfectants and developing new point-of-use methods for the removal and inactivation of waterborne pathogens. The removal of contaminants and reuse of the treated water would provide significant reductions in cost, time, liabilities, and labour to the industry and result in improved environmental stewardship.

View Article and Find Full Text PDF

Laser-induced photo-catalysis process using WO(3) semiconductor catalyst was applied for the study of disinfection effectiveness of E-coliform-contaminated water. For this purpose, wastewater polluted with E-coliform bacteria was exposed to 355 nm UV radiations generated by third harmonic of Nd: YAG laser in special glass cell with and without WO(3) catalyst. E-Coliform quantification was performed by direct plating method to obtain the efficiency of each disinfection treatment.

View Article and Find Full Text PDF