Publications by authors named "Amiu Shino"

Interest in small molecules that target RNA is flourishing, and the expectation set on them to treat diseases with unmet medical needs is high. However, several challenges remain, including difficulties in selecting suitable tools and establishing workflows for their discovery. In this context, we optimized experimental and computational approaches that were previously employed for the protein targets.

View Article and Find Full Text PDF

For the last 20 years, it has been common lore that the free energy of RNA duplexes formed from canonical Watson-Crick base pairs (bps) can be largely approximated with dinucleotide bp parameters and a few simple corrective constants that are duplex independent. Additionally, the standard benchmark set of duplexes used to generate the parameters were GC-rich in the shorter duplexes and AU-rich in the longer duplexes, and the length of the majority of the duplexes ranged between 6 and 8 bps. We were curious if other models would generate similar results and whether adding longer duplexes of 17 bps would affect the conclusions.

View Article and Find Full Text PDF

Both inorganic fertilizer inputs and crop yields have increased globally, with the concurrent increase in the pollution of water bodies due to nitrogen leaching from soils. Designing agroecosystems that are environmentally friendly is urgently required. Since agroecosystems are highly complex and consist of entangled webs of interactions between plants, microbes, and soils, identifying critical components in crop production remain elusive.

View Article and Find Full Text PDF

Prebiotics and probiotics strongly impact the gut ecosystem by changing the composition and/or metabolism of the microbiota to improve the health of the host. However, the composition of the microbiota constantly changes due to the intake of daily diet. This shift in the microbiota composition has a considerable impact; however, non-pre/probiotic foods that have a low impact are ignored because of the lack of a highly sensitive evaluation method.

View Article and Find Full Text PDF

Cannibalism is known in many insect species, yet its impact on insect metabolism has not been investigated in detail. This study assessed the effects of cannibalism on the metabolism of fourth-instar larvae of the non-predatory insect Helicoverpa armigera (Lepidotera: Noctuidea). Two groups of larvae were analyzed: one group fed with fourth-instar larvae of H.

View Article and Find Full Text PDF

Improved signal identification for biological small molecules (BSMs) in a mixture was demonstrated by using multidimensional NMR on samples from (13) C-enriched Rhododendron japonicum (59.5 atom%) cultivated in air containing (13) C-labeled carbon dioxide for 14 weeks. The resonance assignment of 386 carbon atoms and 380 hydrogen atoms in the mixture was achieved.

View Article and Find Full Text PDF

Bacteria-derived enzymes that can modify specific lignin substructures are potential targets to engineer plants for better biomass processability. The Gram-negative bacterium Sphingobium sp. SYK-6 possesses a Cα-dehydrogenase (LigD) enzyme that has been shown to oxidize the α-hydroxy functionalities in β-O-4-linked dimers into α-keto analogues that are more chemically labile.

View Article and Find Full Text PDF

In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions.

View Article and Find Full Text PDF

Gradual depletion of the world petroleum reserves and the impact of environmental pollution highlight the importance of developing alternative energy resources such as plant biomass. To address these issues, intensive research has focused on the plant Jatropha curcas, which serves as a rich source of biodiesel because of its high seed oil content. However, producing biodiesel from Jatropha generates large amounts of biomass waste that are difficult to use.

View Article and Find Full Text PDF

Anaerobic digestion of biomacromolecules in various microbial ecosystems is influenced by the variations in types, qualities, and quantities of chemical components. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for characterizing the degradation of solids to gases in anaerobic digestion processes. Here we describe a characterization strategy using NMR spectroscopy for targeting the input solid insoluble biomass, catabolized soluble metabolites, and produced gases.

View Article and Find Full Text PDF

Anaerobic digestion of highly polymerized biomass by microbial communities present in diverse microbial ecosystems is an indispensable metabolic process for biogeochemical cycling in nature and for industrial activities required to maintain a sustainable society. Therefore, the evaluation of the complicated microbial metabolomics presents a significant challenge. We here describe a comprehensive strategy for characterizing the degradation of highly crystallized bacterial cellulose (BC) that is accompanied by metabolite production for identifying the responsible biocatalysts, including microorganisms and their metabolic functions.

View Article and Find Full Text PDF

Ecosystems can be conceptually thought of as interconnected environmental and metabolic systems, in which small molecules to macro-molecules interact through diverse networks. State-of-the-art technologies in post-genomic science offer ways to inspect and analyze this biomolecular web using omics-based approaches. Exploring useful genes and enzymes, as well as biomass resources responsible for anabolism and catabolism within ecosystems will contribute to a better understanding of environmental functions and their application to biotechnology.

View Article and Find Full Text PDF