Surface passivation by post-treatment with methylammonium chloride (MACl) is regarded as a promising strategy to suppress surface defects in organic-inorganic lead halide perovskites and elevate the efficiency of solar cells based on these materials. However, traditional MACl post-treatment methods often impede the performance of the final device, due to the creation of additional unwanted defects. Herein, we report a novel approach for chloride post-treatment by applying a mixed ethanol/toluene solvent and validate its beneficial effect on the structure, composition, and optical properties of methylammonium lead iodide nano/microcrystals and related photosensitive devices.
View Article and Find Full Text PDFPhoto-luminescence (P-L) intermittency (or blinking) in semiconductor nanocrystals (NCs), a phenomenon ubiquitous to single-emitters, is generally considered to be temporally random intensity fluctuations between "bright" ("On") and "dark" ("Off") states. However, individual quantum-dots (QDs) rarely exhibit such telegraphic signals, and yet, a vast majority of single-NC blinking data are analyzed using a single fixed threshold which generates binary trajectories. Furthermore, while blinking dynamics can vary dramatically over NCs in the ensemble, the extent of diversity in the exponents (m) of single-particle On-/Off-time distributions (P(t)), often used to validate mechanistic models of blinking, remains unclear due to a lack of statistically relevant data sets.
View Article and Find Full Text PDFAbrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano-emitters. Extended quantum-confined nanostructures also undergo spatially heterogeneous blinking; however, there is no such precedent in dimensionally unconfined (bulk) materials. Herein, we report multi-level blinking of entire individual organo-lead bromide perovskite microcrystals (volume=0.
View Article and Find Full Text PDF