This research explores the alteration of metal-organic frameworks (MOFs) using a method called postsynthetic metal exchange. We focus on the shift from a Zn-based MOF containing a [ZnO(COO)] secondary building unit (SBU) of octahedral site symmetry (ANT-1(Zn)) to a Fe-based one with a [FeO(COO)] SBU of trigonal prismatic site symmetry (ANT-1(Fe)). The symmetry-mismatched SBU transformation cleverly maintains the MOF's overall structure by adjusting the conformation of the flexible 1,3,5-benzenetribenzoate linker to alleviate the framework strain.
View Article and Find Full Text PDFA few metal-organic frameworks (MOFs), which typically use strong acids as proton sources, display superprotonic conductivity (≈10 S cm ); however, they are rare due to the instability of MOFs in highly acidic conditions. For the first time, we report superprotonic conductivity using a moderately acidic guest, zwitterionic sulfamic acid (HSA), which is encapsulated in MOF-808 and MIL-101. HSA acts not only as a proton source but also as a proton-conducting medium due to its extensive hydrogen bonding ability and zwitterion effect.
View Article and Find Full Text PDFIncorporating functionality into the framework of metal-organic frameworks (MOFs) has attracted substantial interest because the physical and chemical properties of MOFs can be tuned by functionalizing pores. The ligand functionalization of MOF-74 is challenging because of its pristine organic ligand and framework structure. Herein, we report a series of ligand-functionalized Ni-MOF-74 derivatives synthesized by defect engineering using a mixed-ligand approach.
View Article and Find Full Text PDFA metal-organic framework (MOF) having superprotonic conductivity, MOF-808, is prepared by modulating the binding mode of the sulfamate (SA) moieties grafted onto the metal clusters. The activation of the SA-grafted MOF-808 at 150 °C changes the binding mode of the grafted SA from monodentate to bridging bidentate, thus converting the neutral amido (-S-NH ) moiety of the grafted SA to the more acidic cationic sulfiliminium (-S=NH ) moiety. Further, the acidic sulfiliminium moiety of MOF-808-4SA-150 results in more efficient proton conduction than the amido moiety of MOF-808-4SA-60.
View Article and Find Full Text PDFThe development of solid-state proton-conducting materials with high conductivity that operate under both anhydrous and humidified conditions is currently of great interest in fuel-cell technology. A 3D metal-organic framework (MOF) with acid-base pairs in its coordination space that efficiently conducts protons under both anhydrous and humid conditions has now been developed. The anhydrous proton conductivity for this MOF is among the highest values that have been reported for MOF materials, whereas its water-assisted proton conductivity is comparable to that of the organic polymer Nafion, which is currently used for practical applications.
View Article and Find Full Text PDF