Publications by authors named "Amitha Mithra Sevanthi"

The present study investigated the linkage between days to flowering (DTF) and growth habit (GH) in pigeonpea using QTL mapping, QTL-seq, and GWAS approaches. The linkage map developed here is the largest to date, spanning 1825.56 cM with 7987 SNP markers.

View Article and Find Full Text PDF

Powdery mildew caused by Erysiphe necator poses a major challenge for grapevine cultivation. This study investigates how stomatal and structural traits influence resistance to this pathogen across diverse Vitis genotypes. Microscopic analysis revealed significant variations in stomatal characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • Association analysis found 77 marker-trait associations (MTAs) linked to phosphorus use efficiency (PUE) traits in bread wheat, with 10 of these classified as high-confidence MTAs.*
  • Candidate-gene mining identified 13 potential genes that are crucial for PUE traits, specifically related to root system development and phosphorus uptake.*
  • The findings suggest that the identified MTAs and candidate genes can be utilized in breeding programs to create wheat varieties better adapted to low phosphorus conditions.*
View Article and Find Full Text PDF
Article Synopsis
  • Rice is a vital food source for over 50% of the global population, but its high glycemic index poses challenges for diabetic and obese individuals, necessitating the development of low-GI rice varieties through understanding starch biogenesis.
  • A study of 200 rice genotypes focused on starch content and categorized them into three groups based on amylose content, leading to the selection of specific genotypes for further analysis of resistant starch levels, protein content, and fatty acid profiles.
  • Results showed varying levels of resistant starch and fatty acids, with specific genotypes demonstrating significant enzymatic activity related to starch biosynthesis, highlighting genetic variations that can influence rice quality traits.
View Article and Find Full Text PDF

The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources.

View Article and Find Full Text PDF

MicroRNAs are key players involved in stress responses in plants and reports are available on the role of miRNAs in drought stress response in rice. This work reports the development of a database, RiceMetaSys: Drought-miR, based on the meta-analysis of publicly available sRNA datasets. From 28 drought stress-specific sRNA datasets, we identified 216 drought-responsive miRNAs (DRMs).

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied 144 types of pigeonpea plants to understand how genes affect when they flower and how tall they grow.
  • They found 29 important gene markers that are linked to flowering time and plant height, with some genes affecting both traits at the same time.
  • Eight different "haplotypes" were discovered, which help predict if a plant will flower early or late, and some of these haplotypes are also connected to the height of the plants.
View Article and Find Full Text PDF

Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome).

View Article and Find Full Text PDF

The assessment of the optimum harvesting stage is a prerequisite to evaluating the performance of new citrus genotypes. The intrinsic and extrinsic fruit quality traits of citrus fruits change throughout their developmental process; therefore, to ensure the highest quality, the fruit must be harvested at an appropriate stage of maturity. The biochemical changes in terms of total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, BrimA (Brix minus acidity), and ascorbic acid, in addition to the organoleptic acceptability of 16 new interspecific citrus hybrids, were evaluated in New Delhi (India) during the H1-H8 harvesting stage at 15-day intervals to standardize the optimum harvesting stage.

View Article and Find Full Text PDF

Unlabelled: To unravel the plastid genome diversity among the cultivated groups of the pigeonpea germplasm, we characterized the SNP occurrence and distribution of 142 pigeonpea mini-core collections based on their reference-based assembly of the chloroplast genome. A total of 8921 SNPs were found, which were again filtered and finally 3871 non-synonymous SNPs were detected and used for diversity estimates. These 3871 SNPs were classified into 12 groups and were present in only 44 of the 125 genes, demonstrating the presence of a precise mechanism for maintaining the whole chloroplast genome throughout evolution.

View Article and Find Full Text PDF

To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars.

View Article and Find Full Text PDF

The intensification of food production conventional crop breeding alone is inadequate to cater for global hunger. The development of precise and expeditious high throughput reverse genetics approaches has hugely benefited modern plant breeding programs. Targeting Induced Local Lesions in Genomes (TILLING) is one such reverse genetics approach which employs chemical/physical mutagenesis to create new genetic sources and identifies superior/novel alleles.

View Article and Find Full Text PDF

In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance.

View Article and Find Full Text PDF

Functional characterization of stress-responsive genes through the analysis of transgenic plants is a standard approach to comprehend their role in climate resilience and subsequently exploit them for sustainable crop improvement. In this study, we investigated the function of , a gene of DUF740 family (- Stress Responsive DUF740 Protein) from rice, which showed upregulation in response to abiotic stress in the available global expression data, but is yet to be functionally characterized. Transgenic plants of the rice gene, driven by a stress-inducible promoter , were developed in the background of cv.

View Article and Find Full Text PDF

Mango (Mangifera indica L.) is one of the most important commercial fruit crop grown in many parts of the world. Major challenges affecting mango trade are short shelf-life, high susceptibility to chilling injury, post-harvest diseases and consumer demand for improved fruit quality.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the need to improve fruit production, specifically guava, to meet global challenges like environmental changes and population growth.
  • Researchers assessed 28 guava germplasm lines using 33 traits, discovering significant genetic variability that could benefit breeding programs.
  • Key findings indicated that certain germplasm lines excelled in fruit weight, nutrient content, and antioxidant properties, offering potential for future development of higher-yield, climate-resilient guava varieties.
View Article and Find Full Text PDF

Pigeonpea, a tropical photosensitive crop, harbors significant diversity for days to flowering, but little is known about the genes that govern these differences. Our goal in the current study was to use genome wide association strategy to discover the loci that regulate days to flowering in pigeonpea. A single trait as well as a principal component based association study was conducted on a diverse collection of 142 pigeonpea lines for days to first and fifty percent of flowering over 3 years, besides plant height and number of seeds per pod.

View Article and Find Full Text PDF

Unlabelled: A wealth of microarray and RNA-seq data for studying abiotic stress tolerance in rice exists but only limited studies have been carried out on multiple stress-tolerance responses and mechanisms. In this study, we identified 6657 abiotic stress-responsive genes pertaining to drought, salinity and heat stresses from the seedling stage microarray data of 83 samples and used them to perform unweighted network analysis and to identify key hub genes or master regulators for multiple abiotic stress tolerance. Of the total 55 modules identified from the analysis, the top 10 modules with 8-61 nodes comprised 239 genes.

View Article and Find Full Text PDF

Panicle blast is the most severe type of rice blast disease. Screening of rice genotypes for panicle blast resistance at the field level requires an efficient and robust method of inoculation. Here, we standardized a method that can be utilized for both small- and large-scale screening and assessment of panicle blast infection and disease reaction.

View Article and Find Full Text PDF

The harvested plant products, specifically, the grains of cereals are major drivers of soil phosphorus (P) depletion. However, the breeding or biotechnology efforts to develop low P seeds have not been attempted because of possible adverse effects on seedling vigour and crop establishment. Several studies have contradictory observations on influence of seed P on seedling vigour.

View Article and Find Full Text PDF

We report here the genome-wide changes resulting from low N (N-W+), low water (N+W-)) and dual stresses (N-W-) in root and shoot tissues of two rice genotypes, namely, IR 64 (IR64) and Nagina 22 (N22), and their association with the QTLs for nitrogen use efficiency. For all the root parameters, except for root length under N-W+, N22 performed better than IR64. Chlorophyll a, b and carotenoid content were higher in IR64 under N+W+ treatment and N-W+ and N+W- stresses; however, under dual stress, N22 had higher chlorophyll b content.

View Article and Find Full Text PDF

Unlabelled: gene identified from a major QTL on chromosome 9 increases the root growth angle (RGA) and thus facilitates survival under drought and hence is an excellent candidate for rice improvement. Twenty-four major Indian upland and lowland genotypes including the 'yield under drought' (DTY) QTL donors were subjected to allele mining of (3058 bp) using four pairs of overlapping primers. A total of 216 and 52 SNPs were identified across all genotypes in the gene and coding region (756 bp) respectively with transversions 3.

View Article and Find Full Text PDF

Rice blast is a global threat to food security with up to 50% yield losses. Panicle blast is a more severe form of rice blast and the response of rice plant to leaf and panicle blast is distinct in different genotypes. To understand the specific response of rice in panicle blast, transcriptome analysis of blast resistant cultivar Tetep, and susceptible cultivar HP2216 was carried out using RNA-Seq approach after 48, 72 and 96 h of infection with along with mock inoculation.

View Article and Find Full Text PDF

Galactomannan is a polymer of high economic importance and is extracted from the seed endosperm of clusterbean (C. tetragonoloba). In the present study, we worked to reveal the stage-specific galactomannan biosynthesis and its regulation in clusterbean.

View Article and Find Full Text PDF

Unlabelled: MADS box genes are class of transcription factors involved in various physiological and developmental processes in plants. To understand their role in floral transition-related pathways, a genome-wide identification was done in , identifying 102 members which were classified into two different groups based on their gene structure. The status of all these genes was further analyzed in three wild species i.

View Article and Find Full Text PDF