Publications by authors named "Amitaksha Saha"

Unlabelled: Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles.

View Article and Find Full Text PDF

First-line cancer chemotherapy necessitates high parenteral dosage and repeated dosing of a combination of drugs over a prolonged period. Current commercially available chemotherapeutic agents, such as Doxil and Taxol, are only capable of delivering single drug in a bolus dose. The aim of this study is to develop dual-drug-loaded, multilayered microparticles and to investigate their antitumor efficacy compared with single-drug-loaded particles.

View Article and Find Full Text PDF

This article addresses simultaneous improvements in the photovoltaic performance and operational stability of organic photovoltaic devices (OPVs) in the inverted configuration when nanostructured ZnO characterized by a lower density of localized surface atomic energy states is employed as an electron transport layer. Two sets of devices with the configuration ITO/ZnO/P3HT:PCBM/MoO3/Ag are employed in the present study. A difference in the density of localized energy states in the band gap of ZnO was produced by altering the crystallinity by annealing the ZnO at two temperatures, viz.

View Article and Find Full Text PDF

This article demonstrates improvements in the operational stability of organic solar cells (OSCs) by taking advantage of the relationship between oxygen stoichiometry and conductivity in nanostructured metal oxide semiconductors (n-MOS). OSCs in the inverted device configuration of ITO/Ca/P3HT:PCBM/MoO3/Ag were employed in the present study. A high degree of oxygen defects were introduced in the hole-conducting MoO3 layer by annealing the devices under vacuum (≥10(-5) mbar) for nominal temperature (120 °C) and time (10 min).

View Article and Find Full Text PDF