Publications by authors named "Amita Rani Sahoo"

The interaction of C5a with C5aR, previously hypothesized to involve a "two-site" binding, (i) recognition of the bulk of C5a by the N-terminus (NT) of C5aR ("site1"), and (ii) recognition of C-terminus (CT) of C5a by the extra cellular surface (ECS) of the C5aR ("site2"). However, the pharmacological landscapes of such recognition sites are yet to be illuminated at atomistic resolution. In the context, unique model complexes of C5aR, harboring pharmacophores of diverse functionality at the "site2" has recently been described.

View Article and Find Full Text PDF

The C5a receptor (C5aR) is a pharmacologically important G-protein coupled receptor (GPCR) that interacts with (h)C5a, by recruiting both the "orthosteric" sites (site1 at the N-terminus and site2 at the ECS, extra cellular surface) on C5aR in a two site-binding model. However, the complex pharmacological landscape and the distinguishing chemistry operating either at the "orthosteric" site1 or at the functionally important "orthosteric" site2 of C5aR are still not clear, which greatly limits the understanding of C5aR pharmacology. One of the major bottlenecks is the lack of an experimental structure or a refined model structure of C5aR with appropriately defined active sites.

View Article and Find Full Text PDF

The phenomena of allosterism continues to advance the field of drug discovery, by illuminating gainful insights for many key processes, related to the structure-function relationships in proteins and enzymes, including the transmembrane G-protein coupled receptors (GPCRs), both in normal as well as in the disease states. However, allosterism is completely unexplored in the native protein ligands, especially when a small covalent change significantly modulates the pharmacology of the protein ligands toward the signaling axes of the GPCRs. One such example is the human C5a ((h)C5a), the potent cationic anaphylatoxin that engages C5aR and C5L2 to elicit numerous immunological and non-immunological responses in humans.

View Article and Find Full Text PDF

C5a receptor (C5aR) is one of the major chemoattractant receptors of the druggable proteome that binds C5a, the proinflammatory polypeptide of complement cascade, triggering inflammation and SEPSIS. Here, we report the model structures of C5aR in both inactive and peptide agonist (YSFKPMPLaR; a=D-Ala) bound meta-active state. Assembled in CYANA and evolved over molecular dynamics (MD) in POPC bilayer, the inactive C5aR demonstrates a topologically unique compact heptahelical bundle topology harboring a β-hairpin in extracellular loop 2 (ECL2), derived from the atomistic folding simulations.

View Article and Find Full Text PDF