Publications by authors named "Amita Hegde"

Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation.

View Article and Find Full Text PDF

P450BM-3 is an extensively studied P450 cytochrome that is naturally fused to a cytochrome P450 reductase domain. Crystal structures of the heme domain of this enzyme have previously generated many insights into features of P450 structure, substrate binding specificity, and conformational changes that occur on substrate binding. Although many P450s are inhibited by imidazole, this compound does not effectively inhibit P450BM-3.

View Article and Find Full Text PDF

Cytochrome P450s are a superfamily of heme containing enzymes that use molecular oxygen and electrons from reduced nicotinamide cofactors to monooxygenate organic substrates. The fatty acid hydroxylase P450BM-3 has been particularly widely studied due to its stability, high activity, similarity to mammalian P450s, and presence of a cytochrome P450 reductase domain that allows the enzyme to directly receive electrons from NADPH without a requirement for additional redox proteins. We previously characterized the substrate N-palmitoylglycine, which found extensive use in studies of P450BM-3 due to its high affinity, high turnover number, and increased solubility as compared to fatty acid substrates.

View Article and Find Full Text PDF