Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2016
Mononuclear transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a new hydrazone ligand derived from pyrazine-2-carbohydrazide and 2-hydroxyacetophenone have been synthesized. The isolated complexes were characterized by elemental analysis, spectral and analytical methods including elemental analyses, IR, diffuse reflectance, (1)H-NMR, mass spectra, molar conductance, magnetic moment, ESR, XRD, TG and SEM analysis. From the elemental analyses data, the stoichiometry of the complexes was found to be 1:1 (metal:ligand) having the general formulae [M(HL)(Cl)(H2O)2], [M=Mn(II), Co(II), Ni(II) and Cu(II)] and [M(L)(H2O)], [M=Zn(II) and Cd(II)].
View Article and Find Full Text PDF