Understanding the biomechanics of fish scales is crucial for their survival and adaptation. Ultrasonic C-scan measurements offer a promising tool for non-invasive characterization, however, existing literature lacks uncertainty analysis while evaluating acoustic impedance. This article presents an innovative integration of uncertainty into the analytical framework for estimating stochastic specific acoustic impedance of salmon fish scale through ultrasonic C-scans.
View Article and Find Full Text PDFThe potential application of Lithium Niobate (LiNbO) crystal is immense, specifically in the domain of meta-surfaces and nano-resonators. However, the practical application of LiNbO is impeded due to unreliable experimental techniques and inaccurate inversion algorithms for material characterization. In the current research, material characterization of anisotropic crystal is proposed by exploring the wavefield evolution in the spatial and temporal domains.
View Article and Find Full Text PDFThe main aim of the paper is damage detection at the microscale in the anisotropic piezoelectric sensors using surface acoustic waves (SAWs). A novel technique based on the single input and multiple output of Rayleigh waves is proposed to detect the microscale cracks/flaws in the sensor. A convex-shaped interdigital transducer is fabricated for excitation of divergent SAWs in the sensor.
View Article and Find Full Text PDFElevated tumor interstitial fluid pressure (TIFP) is a prominent feature of solid tumors and hampers the transmigration of therapeutic macromolecules, for example, large monoclonal antibodies, from tumor-supplying vessels into the tumor interstitium. TIFP values of up to 40 mm Hg have been measured in experimental solid tumors using two conventional invasive techniques: the wick-in-needle and the micropuncture technique. We propose a novel noninvasive method of determining TIFP via ultrasonic investigation with scanning acoustic microscopy at 30-MHz frequency.
View Article and Find Full Text PDFBackground: Aortic wall strains are indicators of biomechanical changes of the aorta due to aging or progressing pathologies such as aortic aneurysm. We investigated the potential of time-resolved three-dimensional ultrasonography coupled with speckle-tracking algorithms and finite element analysis as a novel method for noninvasive in vivo assessment of aortic wall strain.
Methods: Three-dimensional volume datasets of 6 subjects without cardiovascular risk factors and 2 abdominal aortic aneurysms were acquired with a commercial real time three-dimensional echocardiography system.
The elastic properties of human canine and supporting alveolar bone are measured by the distribution of localized speed of sound using scanning acoustic microscopy. Methods for the dynamic, non-destructive diagnostics of dental hard tissues can have a key role in the early detection of demineralization processes and carious lesions, and they are supposed to open the possibility of early dental restorations. The localized distribution of the ultrasound velocity in canine tooth and alveolar bone was obtained using scanning acoustic microscopy with a 5- and 30-MHz transducer.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2011
Selective modes of guided Lamb waves are generated in a laminated aluminum plate for damage detection using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection are selected from theoretical and experimental dispersion curves. Dispersion curves are obtained experimentally by short time Fourier transform of the transient signals.
View Article and Find Full Text PDF