Publications by authors named "Amit R Trivedi"

Article Synopsis
  • * This invention improves data-driven models by enabling accurate predictions with adjustable confidence levels while minimizing the risks of overconfidence in computations.
  • * The transistor shows promise for applications in localization and obstacle avoidance tasks, featuring low power consumption, mechanical flexibility, and excellent performance in maintaining data over long periods.
View Article and Find Full Text PDF

Objective: According to the American Association of Endodontists (AAE), 22 million endodontic procedures have been performed annually. Root canal treatment is needed to prevent infection and restore function when a tooth is severely infected or decayed. This procedure is the only way to preserve the natural tooth and avoid artificial replacement (implant, denture, etc.

View Article and Find Full Text PDF

Artificial intelligence and machine learning are growing computing paradigms, but current algorithms incur undesirable energy costs on conventional hardware platforms, thus motivating the exploration of more efficient neuromorphic architectures. Toward this end, we introduce here a memtransistor with gate-tunable dynamic learning behavior. By fabricating memtransistors from monolayer MoS grown on sapphire, the relative importance of the vertical field effect from the gate is enhanced, thereby heightening reconfigurability of the device response.

View Article and Find Full Text PDF

The recent trend in adapting ultra-energy-efficient (but error-prone) nanomagnetic devices to non-Boolean computing and information processing (e.g. stochastic/probabilistic computing, neuromorphic, belief networks, etc) has resulted in rapid strides in new computing modalities.

View Article and Find Full Text PDF

Spiking neural networks exploit spatiotemporal processing, spiking sparsity, and high interneuron bandwidth to maximize the energy efficiency of neuromorphic computing. While conventional silicon-based technology can be used in this context, the resulting neuron-synapse circuits require multiple transistors and complicated layouts that limit integration density. Here, we demonstrate unprecedented electrostatic control of dual-gated Gaussian heterojunction transistors for simplified spiking neuron implementation.

View Article and Find Full Text PDF

Context: Electronic cigarette (e-cigarette) use is growing within the United States, resulting in both intentional and unintentional exposures to concentrated liquid nicotine or "e-liquid." Nicotine has been culpable for severe poisoning and deaths in the past. However, sources of nicotine have traditionally been from cigarettes, cigars, or pesticides.

View Article and Find Full Text PDF

A series of novel 1,4-dihydropyridine-3,5-dicarbamoyl derivatives bearing an imidazole nucleus at C-4 position were synthesized in excellent yields via multicomponent Hantzsch reaction. The newly synthesized compounds were characterized by IR, (1) H NMR, (13) C NMR, and mass spectroscopy. The synthesized compounds 3a-p were screened for antitubercular activity.

View Article and Find Full Text PDF

A series of novel dihydropyrazolo[3,4-d]pyrimidine derivatives bearing a phenothiazine nucleus were synthesized in excellent yields via a modified Biginelli multicomponent reaction. The newly synthesized compounds were characterized by IR, (1)H NMR, (13)C NMR, Mass spectra and elemental analysis followed by antimycobacterial screening. Among all the screened compounds, compound 4g showed most pronounced activity against Mycobacterium tuberculosis (Mtb) with minimum inhibitory concentration (MIC) of 0.

View Article and Find Full Text PDF

1,4-Dihydropyridines are the emerging class of antitubercular agent. Recently, studies have revealed that 1,4-dihydropyridine-3,5-dicarbamoyl derivatives with lipophilic groups have demonstrated excellent antitubercular activity. We have synthesized new N-aryl-1,4-dihydropyridines bearing carbethoxy and acetyl group at C-3 and C-5 of the DHP ring.

View Article and Find Full Text PDF

A small library of 30 dihydropyrimidines was synthesized and evaluated for their in vitro antitubercular activity against Mycobacterium tuberculosis H(37)Rv. Two compounds, ethyl 4-[3-(4-fluorophenyl)-1-phenyl-1H-pyrazol-4-yl]-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate 4a and ethyl 4-[3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl]-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate 4d were found to be the most active compounds in vitro with MIC of 0.02 μg/mL against MTB and were more potent than isoniazid.

View Article and Find Full Text PDF