Publications by authors named "Amit Pratush"

Environmental heavy metal pollution has become a serious problem in recent years. Therefore, our study investigated seven heavy metal-contaminated mangroves (Beihai, Fangchenggang, Hainan, Hongkong, Shenzhen, Yunxiao, and Zhanjiang) in southern China, and found that they were particularly polluted with Zn and Pb. These heavy metals were mainly distributed in the surface sediments of the mangroves.

View Article and Find Full Text PDF

The common steroid hormones are estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), and testosterone (T). These steroids are reported to contaminate the environment through wastewater treatment plants. Steroid estrogens are widespread in the aquatic environment and therefore pose a potential risk, as exposure to these compounds has adverse impacts on vertebrates.

View Article and Find Full Text PDF

Steroid estrogens are natural hormonal compounds produced by various animals and humans. Estrone (E1), estradiol (E2), and estriol (E3) are the most commonly known estrogens that are released into the environment along with human and animal excreta, which end up polluting water bodies. While these estrogens are usually biotransformed into their respective by-products by various microbial strains, E2 could also be transformed into E1 by 17β-hydroxysteroid dehydrogenases (17β-HSDs) under reducing environmental conditions.

View Article and Find Full Text PDF

Currently, heavy metal pollution becomes a severe problem whole over the world, and these toxic metals enter into the environment either by natural phenomena or due to extensive industrialization. The discharged effluents containing toxic heavy metals mixed with soil/water and change their natural composition. These heavy metals have adverse effects on living beings and cause damage to the vital body organs of animals as well as humans.

View Article and Find Full Text PDF

Steroids, including testosterone, estrone, 17β-estradiol, estriol and 17β-ethinyl estradiol, are harmful not only to the population dynamics of aquatic life forms but also to public health. In this study, a marine testosterone-degrading bacterium (strain N3) was isolated from Nanao Island in the South China Sea. In addition, the strain could also use 17β-estradiol (E2), 17β-ethinyl estradiol (EE2), estriol (E3) or cholesterol as a sole carbon source.

View Article and Find Full Text PDF

Steroids are endocrine disrupting compounds in human and are distributed in various environments. Our previous study showed that a marine bacterium Rhodococcus sp. P14 was able to efficiently degrade one typical steroid estradiol.

View Article and Find Full Text PDF

The phylogenetic diversity of bacterial communities in response to environmental disturbances such as organic pollution has been well studied, but little is known about the way in which organic contaminants influence the acclimation of functional bacteria. In the present study, tolerance assays for bacterial communities from the sediment in the Pearl River Estuary were conducted with the isolation of functional bacteria using pyrene and different estrogens as environmental stressors. Molecular ecological networks and phylogenetic trees were constructed using both 16S rRNA gene sequences of cultured bacterial strains and 16S rRNA gene-based pyrosequencing data to illustrate the successions of bacterial communities and their acclimations to the different organic compounds.

View Article and Find Full Text PDF

A ring-shaped electroeluter (RSE) was designed for protein recovery from polyacrylamide gel matrix. The RSE was designed in such a way that a ring-shaped well was used to place gel slices and an enrichment well was used to collect eluted protein samples. With HSA as model protein, the electroelution time was less than 30 min with 80% recovery rate, and the concentration of recovered protein was 50 times higher than that of conventional method.

View Article and Find Full Text PDF

Presented herein is a novel headspace single drop microextraction (HS-SDME) based on temperature gradient (TG) for an on-site preconcentration technique of volatile and semivolatile samples. First, an inner vial cap was designed as a cooling device for acceptor droplet in HS-SDME unit to achieve fast and efficient microextraction. Second, for the first time, an in-vial TG was generated between the donor phase in a sample vial at 80 °C and the acceptor droplet under the inner vial cap containing cooling liquid at -20 °C for a TG-HS-SDME.

View Article and Find Full Text PDF

In the present study, out of 264 phosphate (P) solubilizing Bacillus strains isolated from apple rhizosphere, only twelve isolates were found to be efficient (showed most of the plant growth promoting activity) which were further characterized at molecular level using 16S rDNA partial gene sequencing. Out of 12 isolates, MZPSB 207 was found to be most efficient P-solubilizing (864.71 μg/ml) isolate which also showed indole acetic acid production (51.

View Article and Find Full Text PDF

The NHase encoding gene of mutant 4D was isolated by PCR amplification. The NHase gene of mutant 4D was successfully cloned and expressed in Escherichia coli by using Ek/LIC Duet cloning kits (Novagen). For the active expression of the NHase gene, the co-expression of small cobalt transporter gene (P-protein gene) has also been co-expressed with NHase gene E.

View Article and Find Full Text PDF

Rhodococcus rhodochrous PA-34 has been reported to produce nitrile hydratase enzyme that converts 3-cyanopyridine to nicotinamide. A mutant of R. rhodochrous PA-34 was generated through chemical mutagenesis using N-methyl-N-nitro-N-nitrosoguanidine (MNNG) that exhibited 2 times higher nitrile hydratase activity as compared to wild strain.

View Article and Find Full Text PDF