An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems.
View Article and Find Full Text PDFDielectric shielded nanoscale patch laser resonators are introduced. Low-index dielectric shield layers surrounding a high-index core are shown to significantly reduce both metal and radiation losses. Structures suitable for both optical and electrical pumping and smaller than the vacuum wavelength in all three dimensions are shown to have a low enough threshold gain to lase at room temperature.
View Article and Find Full Text PDFSurface plasmons efficient excitation is typically expected to be strongly constrained to transverse magnetic (TM) polarized incidence, as demonstrated so far, due to its intrinsic TM polarization. We report a designer plasmonic metamaterial that is engineered in a deep subwavelength scale in visible optical frequencies to overcome this fundamental limitation, and allows transverse electric (TE) polarized incidence to be strongly coupled to surface plasmons. The experimental verification, which is consistent with the analytical and numerical models, demonstrates this enhanced TE-to-plasmon coupling with efficiency close to 100%, which is far from what is possible through naturally available materials.
View Article and Find Full Text PDFWe demonstrate negative radiation pressure on gain medium structures, such that light amplification may cause a nanoscale body to be pulled toward a light source. Optically large gain medium structures, such as slabs and spheres, as well as deep subwavelength bodies, may experience this phenomenon. The threshold gain for radiation pressure reversal is obtained analytically for Rayleigh spheres, thin cylinders, and thin slabs.
View Article and Find Full Text PDFWe introduce an optical microresonator consisting of a planar waveguide terminated by metallic mirrors. The resonator was fabricated on a silicon-on-insulator platform, and its optical performance was theoretically and experimentally investigated. The demonstrated device had dimensions of 200 mumx40 mum and exhibited a quality factor of about 1000 and a free-spectral range of about 8 nm.
View Article and Find Full Text PDFWe introduce a low refractive index layer between the metal and the gain medium in metal-coated laser resonators and demonstrate that it can significantly reduce the dissipation losses. Analysis of a gain medium waveguide shows that for a given waveguide radius, the low index layer has an optimal thickness for which the lasing threshold gain is minimal. The waveguide analysis is used for the design of a novel three-dimensional cylindrical resonator that is smaller than the vacuum wavelength in all three dimensions and exhibits a low enough threshold gain to lase at room temperature.
View Article and Find Full Text PDFIt is demonstrated that a waveguide consisting of two dielectric slabs may become an all-optical spring when guiding a superposition of two transverse evanescent modes. Both slabs are transversally trapped in stable equilibrium due to the optical forces developed. A condition for stable equilibrium on the wavenumbers of the two modes is expressed analytically.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2006
Optical Bragg acceleration structures are waveguides with a vacuum core and dielectric layers as a cladding, designed to guide laser light at the speed-of-light TM mode and accelerate charged particles. In this study, we analyze the electromagnetic forces exerted on the dielectric layers of a planar structure by both the guided laser light and the wake-field of moving charges. The distribution of the volume force densities, as well as the surface force densities, in the interfaces between the layers as a result of the laser propagation is given, and analytic scaling laws for the maximal values are obtained.
View Article and Find Full Text PDFTwo mirrors guiding laser light may experience an either attractive or repulsive force, according to the type of eigenmode they guide. We propose a method for the control over the motion of a mirror by changing the operation wavelength along the dispersion curve of the mode. In addition, a novel method for trapping a mirror in a stable equilibrium, based on a superposition of two modes, is presented.
View Article and Find Full Text PDFIt is demonstrated that a Bragg waveguide consisting of a series of dielectric layers may form an excellent optical acceleration structure. Confinement of the accelerating fields is achieved, for both planar and cylindrical configurations by adjusting the first dielectric layer width. A typical structure made of silica and zirconia may support gradients of the order of 1 GV/m with an interaction impedance of a few hundreds of ohms and with an energy velocity of less than 0.
View Article and Find Full Text PDFIt is demonstrated that Bragg reflection waveguides, either planar or cylindrical, can be designed to support a symmetric mode with a specified core field distribution, by adjusting the first layer width. Analytic expressions are given for this matching layer, which matches between the electromagnetic field in the core, and a Bragg mirror optimally designed for the mode. This adjustment may change significantly the characteristics of the waveguide.
View Article and Find Full Text PDF