Publications by authors named "Amit J Sabnis"

Purpose: The National Cancer Institute-Children's Oncology Group (NCI-COG) Pediatric MATCH trial assigns patients age 1-21 years with refractory malignancies to phase II treatment arms of molecularly targeted therapies on the basis of genetic alterations detected in their tumor. Patients with activating alterations in the mitogen-activated protein kinase pathway were treated with ulixertinib, an extracellular signal-regulated kinase (ERK)1/2 inhibitor.

Methods: As there were no previous pediatric data, ulixertinib was initially tested in a dose escalation cohort to establish the recommended phase II dose (RP2D) before proceeding to the phase II cohort.

View Article and Find Full Text PDF

Molecular chaperones including the heat-shock protein 70-kilodalton (HSP70) family and the J-domain containing protein (JDP) co-chaperones maintain homeostatic balance in eukaryotic cells through regulation of the proteome. The expansive JDP family helps direct specific HSP70 functions, and yet loss of single JDP-encoding genes is widely tolerated by mammalian cells, suggesting a high degree of redundancy. By contrast, essential JDPs might carry out HSP70-independent functions or fill cell-context dependent, highly specialized roles within the proteostasis network.

View Article and Find Full Text PDF

Purpose: Osteosarcoma risk stratification, on the basis of the presence of metastatic disease at diagnosis and histologic response to chemotherapy, has remained unchanged for four decades, does not include genomic features, and has not facilitated treatment advances. We report on the genomic features of advanced osteosarcoma and provide evidence that genomic alterations can be used for risk stratification.

Materials And Methods: In a primary analytic patient cohort, 113 tumor and 69 normal samples from 92 patients with high-grade osteosarcoma were sequenced with OncoPanel, a targeted next-generation sequencing assay.

View Article and Find Full Text PDF

Purpose: Multiple FGFR inhibitors are currently in clinical trials enrolling adults with different solid tumors, while very few enroll pediatric patients. We determined the types and frequency of alterations () in pediatric cancers to inform future clinical trial design.

Methods: Tumors with alterations were identified from two large cohorts of pediatric solid tumors subjected to targeted DNA sequencing: The Dana-Farber/Boston Children's Profile Study (n = 888) and the multi-institution GAIN/iCAT2 (Genomic Assessment Improves Novel Therapy) Study (n = 571).

View Article and Find Full Text PDF

Oncogenic FOXO1 gene fusions drive a subset of rhabdomyosarcoma (RMS) with poor survival; to date, these cancer drivers are therapeutically intractable. To identify new therapies for this disease, we undertook an isogenic CRISPR-interference screen to define PAX3-FOXO1-specific genetic dependencies and identified genes in the GATOR2 complex. GATOR2 loss in RMS abrogated aa-induced lysosomal localization of mTORC1 and consequent downstream signaling, slowing G1-S cell cycle transition.

View Article and Find Full Text PDF

To evaluate the clinical impact of molecular tumor profiling (MTP) with targeted sequencing panel tests, pediatric patients with extracranial solid tumors were enrolled in a prospective observational cohort study at 12 institutions. In the 345-patient analytical population, median age at diagnosis was 12 years (range 0-27.5); 298 patients (86%) had 1 or more alterations with potential for impact on care.

View Article and Find Full Text PDF

Background: Entrectinib is a TRKA/B/C, ROS1, ALK tyrosine kinase inhibitor approved for the treatment of adults and children aged ≥12 years with NTRK fusion-positive solid tumors and adults with ROS1 fusion-positive non-small-cell lung cancer. We report an analysis of the STARTRK-NG trial, investigating the recommended phase 2 dose (RP2D) and activity of entrectinib in pediatric patients with solid tumors including primary central nervous system tumors.

Methods: STARTRK-NG (NCT02650401) is a phase 1/2 trial.

View Article and Find Full Text PDF

Purpose: Molecular tumor profiling is becoming a routine part of clinical cancer care, typically involving tumor-only panel testing without matched germline. We hypothesized that integrated germline sequencing could improve clinical interpretation and enhance the identification of germline variants with significant hereditary risks.

Materials And Methods: Tumors from pediatric patients with high-risk, extracranial solid malignancies were sequenced with a targeted panel of cancer-associated genes.

View Article and Find Full Text PDF

Background: Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of childhood, but occurs infrequently in infants (<1 year). Historically, infants with RMS have worse overall survival compared to other pediatric age groups.

Aim: This study aims to assess the clinical features and treatment factors associated with survival comparing infants to children aged 1-9 years diagnosed with RMS.

View Article and Find Full Text PDF

A 21-year-old man underwent a joint-preserving posterior acetabular resection of metastatic osteosarcoma using a three-dimensional (3D) printed model and intraoperative navigation. The combined application of these advanced technologies can allow for surgical planning of osteotomies involving complex anatomy and help guide resections intraoperatively. They can maximise the achievement of negative oncological margins, preservation of native hip stability and critical neurovascular structures, and optimal postoperative function in an effort to resect all clinically evident disease.

View Article and Find Full Text PDF

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor and bi-functional lipid and protein phosphatase. We report that the metabolic regulator pyruvate dehydrogenase kinase1 (PDHK1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The PTEN protein phosphatase dephosphorylates nuclear factor κB (NF-κB)-activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NF-κB target gene.

View Article and Find Full Text PDF

Identification of the genomic drivers of cancer has led to the clinical development of targeted therapies that strike at the heart of many malignancies. Nonetheless, many cancers outsmart such precision-medicine efforts, and thus therapeutic resistance contributes significantly to cancer mortality. Attempts to understand the basis for resistance in patient samples and laboratory models has yielded two major benefits: one, more effective chemical inhibitors and rational combination therapies are now employed to prevent or circumvent resistance pathways; and two, our understanding of how oncogenic mutations drive cancer cell survival and oncogene addiction is deeper and broader, highlighting downstream or parallel cellular programs that shape these phenotypes.

View Article and Find Full Text PDF

Cancer cells thrive when challenged with proteotoxic stress by inducing components of the protein folding, proteasome, autophagy and unfolded protein response (UPR) pathways. Consequently, specific molecular chaperones have been validated as targets for anti-cancer therapies. For example, inhibition of Hsp70 family proteins (hereafter Hsp70) in rhabdomyosarcoma triggers UPR induction and apoptosis.

View Article and Find Full Text PDF

Mesenchymal round cell tumors are a diverse group of neoplasms defined by primitive, often high-grade cytomorphology. The most common molecular alterations detected in these tumors are gene rearrangements involving EWSR1 to one of many fusion partners. Rare EWSR1-NFATC2 gene rearrangements, corresponding to a t(20;22) gene translocation, have been described in mesenchymal tumors with clear round cell morphology and a predilection for the skeleton.

View Article and Find Full Text PDF

OBJECTIVE To evaluate interventions to reduce avoidable antibiotic use on pediatric oncology and hematopoietic stem cell transplantation (HSCT) services. DESIGN Interrupted time series. SETTING Academic pediatric hospital with separate oncology and HSCT services.

View Article and Find Full Text PDF

Cytosolic and organelle-based heat-shock protein (HSP) chaperones ensure proper folding and function of nascent and injured polypeptides to support cell growth. Under conditions of cellular stress, including oncogenic transformation, proteostasis components maintain homeostasis and prevent apoptosis. Although this cancer-relevant function has provided a rationale for therapeutically targeting proteostasis regulators (e.

View Article and Find Full Text PDF

Resistance to RAF- and MEK-targeted therapy is a major clinical challenge. RAF and MEK inhibitors are initially but only transiently effective in some but not all patients with BRAF gene mutation and are largely ineffective in those with RAS gene mutation because of resistance. Through a genetic screen in BRAF-mutant tumor cells, we show that the Hippo pathway effector YAP (encoded by YAP1) acts as a parallel survival input to promote resistance to RAF and MEK inhibitor therapy.

View Article and Find Full Text PDF

Mutations leading to activation of proto-oncogenic protein kinases (PKs) are a type of drivers crucial for understanding tumorogenesis and as targets for antitumor drugs. However, bioinformatics tools so far developed to differentiate driver mutations, typically based on conservation considerations, systematically fail to recognize activating mutations in PKs. Here, we present the first comprehensive analysis of the 407 activating mutations described in the literature, which affect 41 PKs.

View Article and Find Full Text PDF

Through a clinical deep sequencing protocol, Wu and colleagues have identified multiple FGFR fusion proteins in diverse cancers. Pharmacologic inhibition of FGFR suppressed the growth of FGFR fusion-positive tumor models, suggesting that these FGFR fusions are oncogenic drivers and highlighting the use of streamlined clinical sequencing efforts to identify novel, actionable driver oncoproteins in human tumors.

View Article and Find Full Text PDF

Loss of the JunB/AP-1 transcription factor induces a myeloproliferative disease (MPD) arising from the hematopoietic stem cell (HSC) compartment. Here, we show that junB inactivation deregulates the cell-cycle machinery and increases the proliferation of long-term repopulating HSCs (LT-HSCs) without impairing their self-renewal or regenerative potential in vivo. We found that JunB loss destabilizes a complex network of genes and pathways that normally limit myeloid differentiation, leading to impaired responsiveness to both Notch and TGF-beta signaling due in part to transcriptional deregulation of the Hes1 gene.

View Article and Find Full Text PDF

How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Mutations in genes encoding ribosomal proteins cause the Minute phenotype in Drosophila and mice, and Diamond-Blackfan syndrome in humans. Here we report two mouse dark skin (Dsk) loci caused by mutations in Rps19 (ribosomal protein S19) and Rps20 (ribosomal protein S20). We identify a common pathophysiologic program in which p53 stabilization stimulates Kit ligand expression, and, consequently, epidermal melanocytosis via a paracrine mechanism.

View Article and Find Full Text PDF