Several APOBEC3 enzymes restrict HIV-1 by deaminating cytosine to form uracil in single-stranded proviral (-)DNA. However, HIV-1 Vif counteracts their activity by inducing their proteasomal degradation. This counteraction by Vif is incomplete, as evidenced by footprints of APOBEC3-mediated mutations within integrated proviral genomes of people living with HIV-1.
View Article and Find Full Text PDFHuman APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination-independent antiviral activity through protein and nucleic acid interactions.
View Article and Find Full Text PDFHuman APOBEC3 enzymes are a family of single-stranded (ss)DNA and RNA cytidine deaminases that act as part of the intrinsic immunity against viruses and retroelements. These enzymes deaminate cytosine to form uracil which can functionally inactivate or cause degradation of viral or retroelement genomes. In addition, APOBEC3s have deamination independent antiviral activity through protein and nucleic acid interactions.
View Article and Find Full Text PDFThe seven human APOBEC3 enzymes (APOBEC3A through H, excluding E) are host restriction factors. Most of the APOBEC3 enzymes can restrict HIV-1 replication with different efficiencies. The HIV-1 Vif protein combats APOBEC3-mediated restriction by inducing ubiquitination and degradation in the proteasome.
View Article and Find Full Text PDFThe APOBEC3 (A3) family of single-stranded DNA cytidine deaminases are host restriction factors that inhibit lentiviruses, such as HIV-1, in the absence of the Vif protein that causes their degradation. Deamination of cytidine in HIV-1 (-)DNA forms uracil that causes inactivating mutations when uracil is used as a template for (+)DNA synthesis. For APOBEC3C (A3C), the chimpanzee and gorilla orthologues are more active than human A3C, and we determined that Old World Monkey A3C from rhesus macaque (rh) is not active against HIV-1.
View Article and Find Full Text PDFThe transmission of viruses from animal hosts into humans have led to the emergence of several diseases. Usually these cross-species transmissions are blocked by host restriction factors, which are proteins that can block virus replication at a specific step. In the natural virus host, the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not the case for restriction factors from an unnatural host.
View Article and Find Full Text PDFThe APOBEC3 (A3) genes encode cytidine deaminase proteins with potent antiviral and anti-retroelement activity. This locus is characterized by duplication, recombination, and deletion events that gave rise to the seven A3s found in primates. These include three single deaminase domain A3s (A3A, A3C, and A3H) and four double deaminase domain A3s (A3B, A3D, A3F, and A3G).
View Article and Find Full Text PDFSimian immunodeficiency virus infecting sooty mangabeys (SIVsmm) has been transmitted to humans on at least nine occasions, giving rise to human immunodeficiency virus type 2 (HIV-2) groups A to I. SIVsmm isolates replicate in human T cells and seem capable of overcoming major human restriction factors without adaptation. However, only groups A and B are responsible for the HIV-2 epidemic in sub-Saharan Africa, and it is largely unclear whether adaptive changes were associated with spread in humans.
View Article and Find Full Text PDFThe highly pathogenic avian influenza (HPAI) H5N1 viruses and their spillover into the human population pose substantial economic and public health threats. Although antiviral drugs have some effect in treating influenza infection, vaccination is still the most effective intervention to prevent possible pandemic outbreaks. We have developed a novel H5 influenza vaccine to improve the world's pandemic preparedness.
View Article and Find Full Text PDFAPOBEC3G, a member of the double-domain cytidine deaminase (CD) APOBEC, binds RNA to package into virions and restrict HIV-1 through deamination-dependent or deamination-independent inhibition. Mainly due to lack of a full-length double-domain APOBEC structure, it is unknown how CD1/CD2 domains connect and how dimerization/multimerization is linked to RNA binding and virion packaging for HIV-1 restriction. We report rhesus macaque A3G structures that show different inter-domain packing through a short linker and refolding of CD2.
View Article and Find Full Text PDFHighly pathogenic avian influenza (HPAI) H5N1 and low pathogenic avian influenza (LPAI) H7N9 viruses pose a severe threat to public health through zoonotic infection, causing severe respiratory disease in humans. While HPAI H5N1 human infections have typically been reported in Asian countries, avian H7N9 human infections have been reported mainly in China. However, Canada reported a case of fatal human infection by the HPAI H5N1 virus in 2014, and two cases of human illness associated with avian H7N9 virus infection in 2015.
View Article and Find Full Text PDFElimination of infected cells by programmed cell death is a well-recognized host defense mechanism to control the spread of infection. In addition to apoptosis, necroptosis is also one of the mechanisms of cell death that can be activated by viral infection. Activation of necroptosis leads to the phosphorylation of mixed-lineage kinase domain-like protein (MLKL) by receptor-interacting protein kinase 3 (RIPK3) and results in MLKL oligomerization and membrane translocation, leading to membrane disruption and a loss of cellular ion homeostasis.
View Article and Find Full Text PDFAdenovirus protein VIII appears to connect core with the inner surface of the adenovirus capsid. Because protein-protein interactions are central to virus replication, identification of proteins interacting with protein VIII may help in understanding their role in adenovirus infection. Our yeast 2-hybrid assay indicated that protein VIII interacts with eukaryotic initiation factor 6 (eIF6).
View Article and Find Full Text PDFProteolytic maturation involving cleavage of one nonstructural and six structural precursor proteins including pVIII by adenovirus protease is an important aspect of the adenovirus life cycle. The pVIII encoded by bovine adenovirus 3 (BAdV-3) is a protein of 216 amino acids and contains two potential protease cleavage sites. Here, we report that BAdV-3 pVIII is cleaved by adenovirus protease at both potential consensus protease cleavage sites.
View Article and Find Full Text PDFEarlier, targeting of DDX3 by few viral proteins has defined its role in mRNA transport and induction of interferon production. This study was conducted to investigate the function of bovine adenovirus (BAdV)-3 pVIII during virus infection. Here, we provided evidence regarding involvement of DDX3 in cap dependent cellular mRNA translation and demonstrated that targeting of DDX3 by adenovirus protein VIII interfered with cap-dependent mRNA translation function of DDX3 in virus infected cells.
View Article and Find Full Text PDFTurkey adenovirus 3 (TAdV-3) causes high mortality and significant economic losses to the turkey industry. However, little is known about the molecular determinants required for viral replication and pathogenesis. Moreover, TAdV-3 does not grow well in cell culture, thus detailed structural studies of the infectious particle is particularly challenging.
View Article and Find Full Text PDFThe L6 region of bovine adenovirus type 3 (BAdV-3) encodes a non-structural protein named 100K. Rabbit antiserum raised against BAdV-3 100K recognized a protein of 130 kDa at 12-24 h and proteins of 130, 100, 95 and 15 kDa at 36-48 h after BAdV-3 infection. The 100K species localized to the nucleus and the cytoplasm of BAdV-3-infected cells.
View Article and Find Full Text PDFThe use of vaccines is an effective and relatively inexpensive means of controlling infectious diseases, which cause heavy economic losses to the livestock industry through animal loss, decreased productivity, treatment expenses and decreased carcass quality. However, some vaccines produced by conventional means are imperfect in many respects including virulence, safety and efficacy. Moreover, there are no vaccines for some animal diseases.
View Article and Find Full Text PDFAdenoviruses are non-enveloped DNA viruses that replicate in the nucleus of infected cells. One of the core proteins, named pVIII, is a minor capsid protein connecting the core with the inner surface of the capsid. Here, we report the characterization of minor capsid protein pVIII encoded by the L6 region of bovine adenovirus (BAdV)-3.
View Article and Find Full Text PDFViruses alter the structure and the function of mitochondria for survival. Electron microscopy analysis of the cells infected with bovine adenovirus 3 revealed extensive damage to the inner mitochondrial membrane characterized by dissolution of the cristae and amorphous appearance of mitochondrial matrix with little or no damage to the outer mitochondrial membrane. There were fewer cristae with altered morphology.
View Article and Find Full Text PDFPrevious studies have suggested an important role of the cytokine adjuvant IL-6 in the induction of mucosal immune responses in animals, including mice. Here, we report the in vivo ability of bovine adenovirus (BAdV)-3 expressing bovine (Bo) IL-6, to influence the systemic and mucosal immune responses against bovine herpesvirus (BHV)-1 gDt in calves. To co-express both antigen and cytokine, we first constructed a recombinant BAdV-3 expressing chimeric gDt.
View Article and Find Full Text PDFViruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca(2+), inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells.
View Article and Find Full Text PDF