Publications by authors named "Amit Bandyopadhyay"

Psychological disparities impact physical activity and fitness in sedentary female college students by affecting cardiovascular efficiency. Ganoderma lucidum, vitality-enhancing herb alleviates health and rejuvenates the mind-body to improve endurance fitness. A double-blinded, randomized, placebo-controlled parallel design study was conducted to determine whether supplementation of G.

View Article and Find Full Text PDF

Epidemiological as well as experimental studies have established that the pineal hormone melatonin has inhibitory effects on different types of cancers. Several mechanisms have been proposed for the anticancer activities of melatonin, but the fundamental molecular pathways still require clarity. We developed a mouse model of breast cancer using Ehrlich's ascites carcinoma (injected in the 4th mammary fat pad of female Swiss albino mice) and investigated the possibility of targeting the autophagy-inflammation-EMT colloquy to restrict breast tumor progression using melatonin as intervention.

View Article and Find Full Text PDF

Commercially pure titanium (CpTi), a bioinert metal, is used as an implant material at low load-bearing sites and as a porous coating on Ti6Al4V at high load-bearing sites. There is an unmet need for metallic biomaterials to improve osseointegration and inherent antimicrobial resistance. In this study, we have added 1 wt % SiO and 3 wt % Cu to the CpTi matrix and processed via metal additive manufacturing (AM).

View Article and Find Full Text PDF

This study measured the tensile, compression, and fatigue behavior of additively manufactured Ti3Al2V as a function of build orientation. Ti3Al2V alloy was prepared by mixing commercially pure titanium (CpTi) and Ti6Al4V in 1:1 wt. ratio.

View Article and Find Full Text PDF

Titanium, being the ultimate choice of metallic material for implant applications, its bio-inertness causes delayed bone-tissue integration at the implant site and prevents expedited healing for the patient. This can cause a severe issue for patients with immunocompromised bone health. Infections at the implant site are another concern; titanium does not offer inherent antimicrobial properties.

View Article and Find Full Text PDF

Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders.

View Article and Find Full Text PDF

Porous and functionally graded materials have seen extensive applications in modern biomedical devices-allowing for improved site-specific performance; their appreciable mechanical, corrosive, and biocompatible properties are highly sought after for lightweight and high-strength load-bearing orthopedic and dental implants. Examples of such porous materials are metals, ceramics, and polymers. Although, easy to manufacture and lightweight, porous polymers do not inherently exhibit the required mechanical strength for hard tissue repair or replacement.

View Article and Find Full Text PDF

High intensity interval training (HIIT) causes oxidative stress and haematological alteration. Present study was aimed to evaluate the effect of 8 weeks' supplementation of vitamin C and E on HIIT induced changes in lipid profile parameters and haematological variables. Hundred six male adolescent players were randomly assigned into five age-matched groups, i.

View Article and Find Full Text PDF

Bimetallic wire arc additive manufacturing (AM) has traditionally been limited to depositions characterized by single planar interfaces. This study demonstrates a more complex radial interface concept, with in situ mechanical interlocking and as-built properties suggesting a prestressed compressive effect. A 308 L stainless core is surrounded by a mild steel casing, incrementally maintaining the interface throughout the Z-direction.

View Article and Find Full Text PDF

This study utilized directed energy deposition (DED) as a metal additive manufacturing (AM) technique to create ceramic-reinforced composites of Ti6Al4V (Ti64) with hydroxyapatite (HA), alumina (AlO), and silicon nitride (SiN). The resulting composites had tailored microstructures designed to improve bio-tribological and antibacterial properties simultaneously. A total of 5-wt % ceramic reinforcement were used in Ti64 in four different composites - (1) only SiN (5S), (2) only AlO (5A), (3) 3 wt % SiN and 2 wt% HA (32SH) and (4) 3 wt % AlO and 2 wt% HA (32AH).

View Article and Find Full Text PDF

Stress shielding remains a challenge in orthopaedic implants, including total hip arthroplasty. Recent development in printable porous implants offers improved patient-specific solutions by providing adequate stability and reducing stress shielding possibilities. This work presents an approach for designing patient-specific implants with inhomogeneous porosity.

View Article and Find Full Text PDF

Arsenic being a toxic metalloid ubiquitously persists in environment and causes several health complications including female reproductive anomalies. Epidemiological studies documented birth anomalies due to arsenic exposure. Augmented reactive oxygen species (ROS) generation and quenched antioxidant pool are foremost consequences of arsenic threat.

View Article and Find Full Text PDF

The increasing need for joint replacement surgeries, musculoskeletal repairs, and orthodontics worldwide prompts emerging technologies to evolve with healthcare's changing landscape. Metallic orthopaedic materials have a shared application history with the aerospace industry, making them only partly efficient in the biomedical domain. However, suitability of metallic materials in bone tissue replacements and regenerative therapies remains unchallenged due to their superior mechanical properties, eventhough they are not perfectly biocompatible.

View Article and Find Full Text PDF

Alloy design coupled with metal additive manufacturing (AM) opens many opportunities for materials innovation. Investigating the effect of printing parameters for alloy design is essential to achieve good part quality. Among different factors, laser absorptivity, heat diffusivity, and in situ intermetallic phase formations are critical.

View Article and Find Full Text PDF

Titanium (Ti) alloys show excellent fatigue and corrosion resistance, high strength to weight ratio, and no toxicity; however, poor osseointegration ability of Ti may lead to implant loosening . Plasma spraying of hydroxyapatite [HA, Ca (PO) (OH)] coating on Ti surfaces is commercially used to enhance osseointegration and the long-term stability of these implants. The biological properties of HA can be improved with the addition of both cationic and anionic dopants, such as zinc ions (Zn) and fluoride (F).

View Article and Find Full Text PDF

The addition of dopants in biomaterials has emerged as a critical regulator of bone formation and regeneration due to their imminent role in the biological process. The present work evaluated the role of strontium (Sr) and magnesium (Mg) dopants in brushite cement (BrC) on in vivo bone healing performance in a rabbit model. Pure, 1 wt% SrO (Sr-BrC), 1 wt% MgO (Mg-BrC), and a binary composition of 1.

View Article and Find Full Text PDF

During the past 30 years, 3D printing (3DP) technologies significantly influenced the manufacturing world, including innovation in biomedical devices. This special issue reviews recent advances in translating 3DP biomaterials and medical devices for metallic, ceramic, and polymeric devices, as well as bioprinting for organ and tissue engineering, along with regulatory issues in 3DP biomaterials. In our introductory article, besides introducing selected 3DP processes for biomaterials, current challenges and growth opportunities are also discussed.

View Article and Find Full Text PDF

Bimetallic structures of nickel (Ni) and commercially pure titanium (CP Ti) were manufactured in three different configurations via directed energy deposition (DED)-based metal additive manufacturing (AM). To understand whether the bulk properties of these three composites are dominated by phase formation at the interface, their directional dependence on mechanical properties was tested. X-ray diffraction (XRD) pattern confirmed the intermetallic NiTi phase formation at the interface.

View Article and Find Full Text PDF

Mechanical properties of porous metal coatings in load-bearing implants play a critical role in determining the in vivo lifetime. However, there is a knowledge gap in measuring the shear strength of porous metal coatings at the porous-dense interface. This study evaluated pore morphology dependence and strut-size on compression, shear deformation, and in vitro response of additively manufactured porous Ti6Al4V structures.

View Article and Find Full Text PDF

Laser-based 3D Printing was utilized to deposit a silica (SiO) coating on the surface of Ti6Al4V (Ti64) alloy for implementation onto articulating surfaces of load-bearing implants. The surface laser melting (SLM) technique was implemented in 1, and 2 laser passes (1LP and 2LP) after SiO deposition to understand the influence of remelting on the coating's hardness and tribological performance. It was observed that compositional and microstructural features increased the cross-sectional hardness.

View Article and Find Full Text PDF

Composite material development via laser-based additive manufacturing offers many exciting advantages to manufacturers; however, a significant challenge exists in our understanding of process-property relationships for these novel materials. Herein we investigate the effect of input processing parameters towards designing an oxidation-resistant titanium matrix composite. By adjusting the linear input energy density, a composite feedstock of titanium-boron carbide-boron nitride (5 wt% overall reinforcement) resulted in a highly reinforced microstructure composed of borides and carbides and nitrides, with variable properties depending on the overall input energy.

View Article and Find Full Text PDF

Calcium phosphate (CaP)-based ceramics are a popular choice for bone-graft applications due to their compositional similarities with bone. Similarly, Bioactive glass (BG) is also common for bone tissue engineering applications due to its excellent biocompatibility and bone binding ability. We report tricalcium phosphate (TCP)-BG (45S5 BG) composite scaffolds using conventional processing and binder jetting-based 3D printing (3DP) technique.

View Article and Find Full Text PDF

Additive manufacturing (AM), or 3D printing, of bioceramic scaffolds promises personalized treatment options for patients with site-specific designability for repair and reconstruction of bone defects. Although the theory for creating these complex geometries has already been made possible through AM's advancement, such shapes' manufacturability is difficult due to printing with ceramics' inherent complexities. Ceramics have the added challenge of being highly brittle, poor handleability of green (pre-sintered) parts, making complex shape high strength parts challenging to manufacture.

View Article and Find Full Text PDF

3D Printing (3DP) or additive manufacturing (AM) enables parts with complex shapes, design flexibility, and customization opportunities for defect specific patient-matched implants. 3DP or AM also offers a design platform that can be used to innovate novel alloys for application-specific compositional modifications. In medical applications, the biological response from a host tissue depends on a biomaterial's structural and compositional properties in the physiological environment.

View Article and Find Full Text PDF