Publications by authors named "Amisel Almirall"

The intra-articular administration of drugs has attracted great interest in recent decades for the treatment of osteoarthritis. The use of modified drugs has also attracted interest in recent years because their intra-articular administration has demonstrated encouraging results. The objective of this work was to prepare injectable-thermosensitive hydrogels for the intra-articular administration of Etanercept (ETA), an inhibitor of tumor necrosis factor-α.

View Article and Find Full Text PDF

Cartilage diseases currently affect a high percentage of the world's population. Almost all of these diseases, such as osteoarthritis (OA), cause inflammation of this soft tissue. However, this could be controlled with biomaterials that act as an anti-inflammatory delivery system, capable of dosing these drugs over time in a specific area.

View Article and Find Full Text PDF

Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically.

View Article and Find Full Text PDF

Hydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components.

View Article and Find Full Text PDF

Calcium phosphate cements have the advantage that they can be prepared as a paste that sets in a few minutes and can be easily adapted to the shape of the bone defect, which facilitates its clinical application. In this research, six formulations of brushite (dicalcium phosphate dihydrated) cement were obtained and the effect of the addition of sodium alginate was analyzed, such as its capacity as a tetracycline release system. The samples that contain sodium alginate set in 4 or 5 min and showed a high percentage of injectability (93%).

View Article and Find Full Text PDF

Polymer-based tri-layered (bone, intermediate and top layers) scaffolds used for the restoration of articular cartilage were prepared and characterized in this study to emulate the concentration gradient of cartilage. The scaffolds were physically or chemically crosslinked. In order to obtain adequate scaffolds for the intended application, the impact of the type of calcium phosphate used in the bone layer, the polymer used in the intermediate layer and the interlayer crosslinking process were analyzed.

View Article and Find Full Text PDF

Various tissue engineering systems for cartilage repair have been designed and tested over the past two decades, leading to the development of many promising cartilage grafts. However, no one has yet succeeded in devising an optimal system to restore damaged articular cartilage. Here, the design, assembly, and biological testing of a porous, chitosan/collagen-based scaffold as an implant to repair damaged articular cartilage is reported.

View Article and Find Full Text PDF

Articular cartilage is a connective tissue structure that is found in anatomical areas that are important for the movement of the human body. Osteoarthritis is the ailment that most often affects the articular cartilage. Due to its poor intrinsic healing capacity, damage to the articular cartilage is highly detrimental and at present the reconstructive options for its repair are limited.

View Article and Find Full Text PDF

Herein we review the state-of-the-art in tissue engineering for repair of articular cartilage. First, we describe the molecular, cellular, and histologic structure and function of endogenous cartilage, focusing on chondrocytes, collagens, extracellular matrix, and proteoglycans. We then explore in vitro cell culture on scaffolds, discussing the difficulties involved in maintaining or obtaining a chondrocytic phenotype.

View Article and Find Full Text PDF

Biocompatibility, injectability and in situ self-setting are characteristics of calcium phosphate cements which make them promising materials for a wide range of clinical applications in traumatology and maxillo-facial surgery. One of the main disadvantages is their relatively low strength which restricts their use to nonload-bearing applications. α-Tricalcium phosphate (α-C3P) cement sets into calcium-deficient hydroxyapatite (CDHA), which is biocompatible and plays an essential role in the formation, growth and maintenance of tissue-biomaterial interface.

View Article and Find Full Text PDF
Article Synopsis
  • β-dicalcium silicate (β-C₂ S) is a key component in Portland cement and acts as a hydraulic cement, providing strength through its reaction with water to form a hydrated phase.
  • The study synthesized β-C₂ S using a sol-gel process to create a new type of cement called CSiC, and evaluated its bioactivity and biocompatibility through tests in simulated body fluids and human cell cultures.
  • Results indicated that the sol-gel method effectively produced a pure β-C₂ S powder at low temperatures, forming a bone-like layer on its surface and exhibiting compressive strength similar to human bone, while also showing non-toxic effects on cell growth.
View Article and Find Full Text PDF

Copolymeric composites of acrylamide (AA) and 2,3-epoxypropyl methacrylate (EPMA) with hydroxyapatite (HA) load were studied. Swelling studies reports an anomalous or non-Fickian behavior following a good fitting to a pseudo second order mathematical treatment (α = 0.05, p < 0.

View Article and Find Full Text PDF

One of the main challenges in the investigation on calcium phosphate cements (CPC) lies in the introduction of macroporosity, without loosing the self-setting ability and injectability, characteristic of the cement-type materials. The benefits of macroporosity are related to the enhancement of bone regeneration mechanisms, such as angiogenesis and tissue ingrowth. In this work, the feasibility to obtain self-setting injectable macroporous hydroxyapatite foams by the incorporation of a protein-based foaming agent to a CPC is demonstrated.

View Article and Find Full Text PDF