Publications by authors named "Amirthaa Suntharalingam"

Nonsynonymous gene mutations can be beneficial, neutral, or detrimental to the stability, structure, and biological function of the encoded protein, but the effects of these mutations are often not readily predictable. For example, the β-propeller olfactomedin domain of myocilin (mOLF) exhibits a complex interrelationship among structure(s), stability, and aggregation. Numerous mutations within mOLF are linked to glaucoma; the resulting variants are less stable, aggregation-prone, and sequestered intracellularly, causing cytotoxicity.

View Article and Find Full Text PDF

The heat shock protein 90 (Hsp90) family of molecular chaperones regulates protein homeostasis, folding, and degradation. The ER-resident Hsp90 isoform, glucose-regulated protein 94 (Grp94), promotes the aggregation of mutant forms of myocilin, a protein associated with primary open-angle glaucoma. While inhibition of Grp94 promotes the degradation of mutant myocilin in vitro, to date no Grp94-selective inhibitors have been investigated in vivo.

View Article and Find Full Text PDF

The accumulation of amyloidogenic proteins is a pathological hallmark of neurodegenerative disorders. The aberrant accumulation of the microtubule associating protein tau (MAPT, tau) into toxic oligomers and amyloid deposits is a primary pathology in tauopathies, the most common of which is Alzheimer's disease (AD). Intrinsically disordered proteins, like tau, are enriched with proline residues that regulate both secondary structure and aggregation propensity.

View Article and Find Full Text PDF

Three scaffolds with inhibitory activity against the heat shock protein 70 (Hsp70) family of chaperones have been found to enhance the degradation of the microtubule associated protein tau in cells, neurons, and brain tissue. This is important because tau accumulation is linked to neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Here, we expanded upon this study to investigate the anti-tau efficacy of additional scaffolds with Hsp70 inhibitory activity.

View Article and Find Full Text PDF

Gain-of-function mutations in the olfactomedin domain of the MYOC gene facilitate the toxic accumulation of amyloid-containing myocilin aggregates, hastening the onset of the prevalent ocular disorder primary open-angle glaucoma. Aggregation of wild-type myocilin has been reported in other glaucoma subtypes, suggesting broader relevance of misfolded myocilin across the disease spectrum, but the absence of myocilin does not cause disease. Thus, strategies aimed at eliminating myocilin could be therapeutically relevant for glaucoma.

View Article and Find Full Text PDF

Background: Mutant myocilin accumulates in the endoplasmic reticulum for unknown reasons.

Results: Glucose-regulated protein (Grp) 94 depletion reduces mutant myocilin by engaging autophagy.

Conclusion: Grp94 triages mutant myocilin through ER-associated degradation, subverting autophagy.

View Article and Find Full Text PDF

Tau aggregation and amyloidogenesis are common hallmarks for neurodegenerative disorders called tauopathies. The molecular chaperone network constitutes the cellular defense against insults such as tau aggregation. However, chaperone effects on tau are dichotomous.

View Article and Find Full Text PDF