This Special Issue of presents cutting-edge research on the applications of computational fluid dynamics (CFD) in medical and biological contexts [...
View Article and Find Full Text PDFSeismocardiography (SCG) is the noninvasive measurement of local vibrations of the chest wall produced by the mechanical activity of the heart and has shown promise in providing clinical information for certain cardiovascular diseases including heart failure and ischemia. Conventionally, SCG signals are recorded by placing an accelerometer on the chest. In this paper, we propose a novel contactless SCG measurement method to extract them from chest videos recorded by a smartphone.
View Article and Find Full Text PDFBioengineering (Basel)
April 2022
In the past few decades, many non-invasive monitoring methods have been developed based on body acoustics to investigate a wide range of medical conditions, including cardiovascular diseases, respiratory problems, nervous system disorders, and gastrointestinal tract diseases. Recent advances in sensing technologies and computational resources have given a further boost to the interest in the development of acoustic-based diagnostic solutions. In these methods, the acoustic signals are usually recorded by acoustic sensors, such as microphones and accelerometers, and are analyzed using various signal processing, machine learning, and computational methods.
View Article and Find Full Text PDFPurpose: To model the effect of the injection location on the distribution of yttrium-90 (Y) microspheres in the liver during radioembolization using computational simulation and to determine the potential effects of radial movements of the catheter tip.
Materials And Methods: Numerical studies were conducted using images from a representative patient with hepatocellular carcinoma. The right hepatic artery (RHA) was segmented from contrast-enhanced cone-beam computed tomography scans.
Objective: This study aims at developing a pipeline that provides the capability to include the catheter effect in the computational fluid dynamics (CFD) simulations of the cardiovascular system and other human vascular flows carried out with the open-source software SimVascular. This tool is particularly useful for CFD simulation of interventional radiology procedures such as tumor embolization where estimation of a therapeutic agent distribution is of interest.
Results: A pipeline is developed that generates boundary condition files which can be used in SimVascular CFD simulations.
Treatments of atherosclerosis depend on the severity of the disease at the diagnosis time. Non-invasive diagnosis techniques, capable of detecting stenosis at early stages, are essential to reduce associated costs and mortality rates. We used computational fluid dynamics and acoustics analysis to extensively investigate the sound sources arising from high-turbulent fluctuating flow through stenosis.
View Article and Find Full Text PDFFor the early detection of atherosclerosis, it is imperative to explore the capabilities of new, effective noninvasive diagnosis techniques to significantly reduce the associated treatment costs and mortality rates. In this study, a multifaceted comprehensive approach involving advanced computational fluid dynamics combined with signal processing techniques was exploited to investigate the highly turbulent fluctuating flow through arterial stenosis. The focus was on localizing high-energy mechano-acoustic source potential to transmit to the epidermal surface.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Yttrium-90 (Y) radioembolization is a liver cancer therapy based on Y microspheres injected into the hepatic artery. Current dosimetry methods used to estimate the absorbed dose in order to prescribe the Y activity to inject are not accurate, which can affect the treatment effectiveness. A new dosimetry based on the hemodynamics simulation of the hepatic arterial tree, CFDose, aimed at overcoming some of the limitations of the current methods.
View Article and Find Full Text PDFTransarterial embolization is a minimally invasive treatment for advanced liver cancer using microspheres loaded with a chemotherapeutic drug or radioactive yttrium-90 (Y) that are injected into the hepatic arterial tree through a catheter. For personalized treatment, the microsphere distribution in the liver should be optimized through the injection volume and location. Computational fluid dynamics (CFD) simulations of the blood flow in the hepatic artery can help estimate this distribution if carefully parameterized.
View Article and Find Full Text PDFYttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma.
View Article and Find Full Text PDFYttrium-90 (Y-90) transarterial radioembolization uses radioactive microspheres injected into the hepatic artery to irradiate liver tumors internally. One of the major challenges is the lack of reliable dosimetry methods for dose prediction and dose verification. We present a patient-specific dosimetry approach for personalized treatment planning based on computational fluid dynamics (CFD) simulations of the microsphere transport combined with Y-90 physics modeling called CFDose.
View Article and Find Full Text PDFThe objective of this study is to extract positive and negative peak velocity profiles from Doppler echocardiographic images. These profiles are currently estimated using tedious manual approaches. Profiles can be used to establish realistic boundary conditions for computational hemodynamic studies and to estimate cardiac time intervals, which are of clinical utility.
View Article and Find Full Text PDFCardiovascular disease is a major cause of death worldwide. New diagnostic tools are needed to provide early detection and intervention to reduce mortality and increase both the duration and quality of life for patients with heart disease. Seismocardiography (SCG) is a technique for noninvasive evaluation of cardiac activity.
View Article and Find Full Text PDFBioengineering (Basel)
April 2017
Accurate estimation of seismocardiographic (SCG) signal features can help successful signal characterization and classification in health and disease. This may lead to new methods for diagnosing and monitoring heart function. Time-frequency distributions (TFD) were often used to estimate the spectrotemporal signal features.
View Article and Find Full Text PDFThe aim of this study is analyzing the differences between plane walking and stepping over an obstacle for two groups of healthy people and people with Down syndrome and then, evaluating the movement efficiency between the groups by comprising of their mechanical energy exchanges. 39 adults including two groups of 21 people with Down syndrome (age: 21.6 ± 7 years) and 18 healthy people (age: 25.
View Article and Find Full Text PDF