Neuromorphic processors promise low-latency and energy-efficient processing by adopting novel brain-inspired design methodologies. Yet, current neuromorphic solutions still struggle to rival conventional deep learning accelerators' performance and area efficiency in practical applications. Event-driven data-flow processing and near/in-memory computing are the two dominant design trends of neuromorphic processors.
View Article and Find Full Text PDFNeuromorphic processors aim to emulate the biological principles of the brain to achieve high efficiency with low power consumption. However, the lack of flexibility in most neuromorphic architecture designs results in significant performance loss and inefficient memory usage when mapping various neural network algorithms. This paper proposes SENECA, a digital neuromorphic architecture that balances the trade-offs between flexibility and efficiency using a hierarchical-controlling system.
View Article and Find Full Text PDFThe development of brain-inspired neuromorphic computing architectures as a paradigm for Artificial Intelligence (AI) at the edge is a candidate solution that can meet strict energy and cost reduction constraints in the Internet of Things (IoT) application areas. Toward this goal, we present μBrain: the first digital yet fully event-driven without clock architecture, with co-located memory and processing capability that exploits event-based processing to reduce an always-on system's overall energy consumption (μW dynamic operation). The chip area in a 40 nm Complementary Metal Oxide Semiconductor (CMOS) digital technology is 2.
View Article and Find Full Text PDFIn computational neuroscience, synaptic plasticity learning rules are typically studied using the full 64-bit floating point precision computers provide. However, for dedicated hardware implementations, the precision used not only penalizes directly the required memory resources, but also the computing, communication, and energy resources. When it comes to hardware engineering, a key question is always to find the minimum number of necessary bits to keep the neurocomputational system working satisfactorily.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2018
Vision processing with dynamic vision sensors (DVSs) is becoming increasingly popular. This type of a bio-inspired vision sensor does not record static images. The DVS pixel activity relies on the changes in light intensity.
View Article and Find Full Text PDFAddress event representation (AER) is a widely employed asynchronous technique for interchanging "neural spikes" between different hardware elements in neuromorphic systems. Each neuron or cell in a chip or a system is assigned an address (or ID), which is typically communicated through a high-speed digital bus, thus time-multiplexing a high number of neural connections. Conventional AER links use parallel physical wires together with a pair of handshaking signals (request and acknowledge).
View Article and Find Full Text PDF